浏览全部资源
扫码关注微信
1.太原师范学院物理系,山西 晋中 030619
2.太原师范学院计算与应用物理研究所,山西 晋中 030619
3.太原师范学院智能优化计算与区块链技术山西省重点实验室,山西 晋中 030619
[ "李鹏飞,男,教授,博士,硕士生导师;博士毕业于山西大学,理论物理研究所;目前主要从事非线性动力学、非线性非厄米光学系统中的孤子、分数阶非线性薛定谔方程中的孤子以及和表面等离子激元等方面的研究工作;主持完成国家和省部级项目4项,在Phys. Rev. E, Phys. Rev. B, Opt. Lett., Opt. Express等期刊发表论文20余篇,出版著作2部。Email:lipf@tynu.edu.cn" ]
纸质出版日期:2024-06-15,
收稿日期:2024-03-19,
修回日期:2024-04-10,
移动端阅览
李鹏飞,贺雪晴,蔡强.分数阶非线性波模型中孤子研究进展[J].新兴科学和技术趋势,2024,3(2):167-179.
LI Pengfei,HE Xueqing,CAI Qiang.Research progress on solitons in fractional nonlinear wave models[J].Emerging Science and Technology,2024,3(2):167-179.
李鹏飞,贺雪晴,蔡强.分数阶非线性波模型中孤子研究进展[J].新兴科学和技术趋势,2024,3(2):167-179. DOI: 10.12405/j.issn.2097-1486.2024.02.005.
LI Pengfei,HE Xueqing,CAI Qiang.Research progress on solitons in fractional nonlinear wave models[J].Emerging Science and Technology,2024,3(2):167-179. DOI: 10.12405/j.issn.2097-1486.2024.02.005.
孤子理论和实验研究涉及的非线性波模型大多数是整数阶导数,在分数阶导数非线性波模型中研究孤子存在性、稳定性及传输特性,进一步将孤子的研究拓展到分数维度。此外,分数衍射和分数色散效应为孤子传输的调控提供了新的自由度。本文简要介绍了分数量子力学的理论研究进展,概述了光学领域中分数薛定谔方程的理论和实验方面的研究进展,回顾了分数阶非线性薛定谔方程中孤子的数值算法、孤子解的存在形式、自发对称破缺以及演化,具体介绍了宇称时间对称的分数阶非线性薛定谔方程中孤子的自发对称破缺和鬼态的产生机制,并对该领域未来的发展做了展望。
Most of the nonlinear wave models involved in soliton theory and experimental research are integer derivatives. The study of of solitons has been further extended from the existence, the stability and the transmission characteristics of solitons in the fractional derivative nonlinear wave model to fractional dimension. In addition, fractional diffraction and fractional dispersion effects provide a new freedom to control the soliton evolutions. This article briefly introduces the theoretical research progress of fractional quantum mechanics, outlines the theoretical and experimental research progress of the fractional Schrödinger equation in the field of optics, and reviews the numerical algorithm of solitons in the fractional nonlinear Schrödinger equation, the existence form of soliton solutions, and spontaneous symmetry breaking and evolutions. It also introduces in details the spontaneous symmetry breaking of solitons and the generation mechanism of ghost states in the fractional nonlinear Schrödinger equation with parity-time symmetric potentials, and gives an outlook for the future development of this field.
分数阶非线性薛定谔方程孤子宇称时间对称自发对称破缺
fractional nonlinear Schrödinger equationsolitonparity-time symmetryspontaneous symmetry breaking
OLDHAM K B,SPANIER J. The Fractional Calculus[M]. New York: Academic Press, 1974.
LASKIN N. Fractional quantum mechanics[J]. Physical Review E, 2000, 62(3): 3135-3145. DOI:10.1103/PhysRevE.62.3135http://dx.doi.org/10.1103/PhysRevE.62.3135.
LASKIN N. Fractional quantum mechanics and Lévy path integrals[J]. Physics Letters A, 2000, 268(4-6): 398-305. DOI:10.1016/S0375-9601(00)00201-2http://dx.doi.org/10.1016/S0375-9601(00)00201-2.
LASKIN N. Fractional Schrödinger equation[J]. Physical Review E, 2002, 66(5): 056108. DOI:10.1103/PhysRevE.66.056108http://dx.doi.org/10.1103/PhysRevE.66.056108.
PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
KILBASA A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
TARASOV V E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media[M]. Berlin: Springer, 2010.
HERRMANN R. Fractional Calculus: An Introduction for Physicists[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2014.
HILFERR. Applications of Fractional Calculus in Physics[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2000.
WEI Y C. Comment on “Fractional quantum mechanics” and “Fractional Schrödinger equation”[J]. Physical Review E, 2016, 93(6): 066103. DOI:10.1103/PhysRevE.93.066103http://dx.doi.org/10.1103/PhysRevE.93.066103.
LASKINN. Reply to “Comment on ‘Fractional quantum mechanics’ and ‘Fractional Schrödinger equation’”[J]. Physical Review E, 2016, 93(6): 066104. DOI:10.1103/PhysRevE.93.066104http://dx.doi.org/10.1103/PhysRevE.93.066104.
DONGJ P,XU M Y. Some solutions to the space fractional Schrödinger equation using momentum representation method[J]. Journal of Mathematical Physics, 2007, 48(7): 072105.DOI:10.1063/1.2749172http://dx.doi.org/10.1063/1.2749172
OLIVEIRA E C D, VAZ J. Tunneling in fractional quantum mechanics[J]. Journal of Physics A-Mathematical and Theoretical, 2011, 44(18): 185303. DOI:10.1088/1751-8113/44/18/185303http://dx.doi.org/10.1088/1751-8113/44/18/185303.
LUCHKO Y. Fractional Schrödinger equation for a particle moving in a potential well[J]. Journal of Mathematical Physics, 2013, 54(1): 012111.DOI:10.1063/1.4777472http://dx.doi.org/10.1063/1.4777472.
ZABA M, GARBACZEWSKI P. Solving fractional Schrödinger-type spectral problems: Cauchy oscillator and Cauchy well[J]. Journal of Mathematical Physics, 2014, 55(9): 092103.DOI:10.1063/1.4894057http://dx.doi.org/10.1063/1.4894057.
TARE J D, ESGUERRA J P H. Transmission through locally periodic potentials in space-fractional quantum mechanics[J]. Physica A-Statistical Mechanics and Its Applications, 2014, 407: 43-53. DOI:10.1016/j.physa.2014.03.084http://dx.doi.org/10.1016/j.physa.2014.03.084.
ZHANG Y Q, LIU X, BELIĆ M R,et al. Propagation dynamics of a light beam in a fractional Schrödinger equation[J]. Physical Review Letters, 2015, 115(18): 180403.DOI:10.1103/PhysRevLett.115.180403http://dx.doi.org/10.1103/PhysRevLett.115.180403.
ZHANG Y Q, ZHONG H, BELIĆ M R,et al. Diffraction-free beams in fractional Schrödinger equation[J]. Scientific Reports, 2016, 6(1): 23645.DOI:10.1038/srep23645http://dx.doi.org/10.1038/srep23645.
HUANG X W, DENG Z X, FU X Q. Diffraction-free beams in fractional Schrödinger equation with a linear potential[J]. Journal of the Optical Society of America B, 2017, 34(5): 976-982. DOI:10.1364/JOSAB.34.000976http://dx.doi.org/10.1364/JOSAB.34.000976.
HUANG X W, DENG Z X, SHI X H, et al. Propagation characteristics of ring Airy beams modeled by the fractional Schrödinger equation[J]. Journal of the Optical Society of America B, 2017, 34(10): 2190-2197. DOI: 10.1364/JOSAB.34.002190http://dx.doi.org/10.1364/JOSAB.34.002190.
HUANG X W, DENG Z X, BAI Y F,et al. Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation[J]. Optics Express, 2017, 25(26): 32560-32569.DOI: 10.1364/OE.25.032560http://dx.doi.org/10.1364/OE.25.032560.
ZHANG D, ZHANG Y Q, ZHANG Z Y, et al. Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice[J]. Annalen der Physik, 2017, 529: 1700149.DOI: 10.1002/andp.201700149http://dx.doi.org/10.1002/andp.201700149.
ZHANG L F, LI C X, ZHONG H Z, et al. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes[J]. Optics Express, 2016, 24(13): 14406-14418. DOI: 10.1364/OE.24.014406http://dx.doi.org/10.1364/OE.24.014406.
ZANG F, WANG Y, LI L. Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient[J]. Optics Express, 2018, 26(18): 23740-2375.DOI: 10.1364/OE.26.023740http://dx.doi.org/10.1364/OE.26.023740.
HUANG C M, DONG L W. Beam propagation management in a fractional Schrödinger equation[J]. Scientific Reports, 2017, 7(1): 5442. DOI: 10.1038/s41598-017-05926-5http://dx.doi.org/10.1038/s41598-017-05926-5.
WU Z K, YANG K B, REN X J, et al. Conical diffraction modulation in fractional dimensions with a PT-symmetric potential[J]. Chaos Solitons & Fractals, 2022, 164: 112631. DOI: 10.1016/j.chaos.2022.112631http://dx.doi.org/10.1016/j.chaos.2022.112631.
ZHANG Y Q, WANG R, ZHONG H, et al. Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation[J]. Scientific Reports, 2017, 7(1): 17872. DOI: 10.1038/s41598-017-17995-7http://dx.doi.org/10.1038/s41598-017-17995-7.
ZHANG Y Q, WANGR, ZHONG H, et al. Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation[J]. Optics Express, 2017, 25(25): 32401-32410. DOI: 10.1364/OE.25.032401http://dx.doi.org/10.1364/OE.25.032401.
ZHANG Y Q, ZHONG H, BELIĆ M R, et al. PT-symmetry in a fractional Schrödinger equation[J]. Laser & Photonics Review, 2016, 10(3): 526-531.DOI: 10.1002/lpor.201600037http://dx.doi.org/10.1002/lpor.201600037.
LIS R, BAO Y Y, LIU Y H, et al. Bright solitons in fractional coupler with spatially periodical modulated nonlinearity[J]. Chaos Solitons & Fractals, 2022, 162: 112484. DOI: 10.1016/j.chaos.2022.112484http://dx.doi.org/10.1016/j.chaos.2022.112484.
ZENG L W, ZHU Y L, MALOMED B A, et al. Quadratic fractional solitons[J]. Chaos Solitons & Fractals, 2022, 154: 111586. DOI: 10.1016/j.chaos.2021.111586http://dx.doi.org/10.1016/j.chaos.2021.111586.
WANG J F, JIN Y, GONGX G, et al. Generation of random soliton-like beams in a nonlinear fractional Schrödinger equation[J]. Optics Express, 2022, 30(5): 8199-8211. DOI: 10.1364/OE.448972http://dx.doi.org/10.1364/OE.448972.
BAO Y Y, LI S R, LIU Y H, et al. Gap solitons and nonlinear Bloch waves in fractional quantum coupler with periodic potential[J]. Chaos Solitons & Fractals, 2022, 156: 111853.DOI: 10.1016/j.chaos.2022.111853http://dx.doi.org/10.1016/j.chaos.2022.111853.
WANGQ, ZHANG L L, MALOMED B A, et al. Transformation of multipole and vortex solitons in the nonlocal nonlinear fractional Schrödinger equation by means of Lévy-index management[J]. Chaos Solitons & Fractals, 2022, 157:111995. DOI:10.1016/j.chaos.2022.111995http://dx.doi.org/10.1016/j.chaos.2022.111995.
ZHONG M, YAN Z Y. Formation of multi-peak gap solitons and stable excitations for double-Lévy-index and mixed fractional NLS equations with optical lattice potentials[J]. Proceedings of the Royal Society A, 2023, 479: 20230222. DOI:10.1098/rspa.2023.0222http://dx.doi.org/10.1098/rspa.2023.0222.
ZHONG M, CHEN Y, YAN Z Y, et al. Suppression of soliton collapses, modulational instability and rogue-wave excitation in two-Lévy-index fractional Kerr media[J]. Proceedings of the Royal Society A, 2023, 480:20230765. DOI:10.1098/rspa.2023.0765http://dx.doi.org/10.1098/rspa.2023.0765.
SAKAGUCHI H,MALOMED B A. One- and two-dimensional solitons in spin-orbit coupled Bose-Einstein condensates with fractional kinetic energy[J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2022, 55: 155301. DOI:10.1088/1361-6455/ac7685http://dx.doi.org/10.1088/1361-6455/ac7685.
STICKLER B A. Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal[J]. Physical Review E, 2013, 88(1): 012120. DOI:10.1103/PhysRevE.88.012120http://dx.doi.org/10.1103/PhysRevE.88.012120.
PINSKER F, BAOW, ZHANG Y,et al. Fractional quantum mechanics in polariton condensates with velocity dependent mass [J]. Physical Review B 2015, 92: 195310. DOI:10.1103/PhysRevB.92.195310http://dx.doi.org/10.1103/PhysRevB.92.195310.
LONGHI S. Fractional Schrödinger equation in optics[J]. Optics Letters, 2015, 40(6): 1117-1120. DOI: 10.1364/OL.40.001117http://dx.doi.org/10.1364/OL.40.001117
LIU S L ,ZHANG Y W, MALOMED B A, et al. Experimental realisations of the fractional Schrödinger equation in the temporal domain[J]. Nature Communications, 2023, 14(1): 222.DOI: 10.1038/s41467-023-35892-8http://dx.doi.org/10.1038/s41467-023-35892-8.
YANG J K. Newton-conjugate-gradient methods for solitary wave computations[J]. Journal of Computational Physics, 2009, 228(18):7007-7024.DOI: 10.1016/j.jcp.2009.06.012http://dx.doi.org/10.1016/j.jcp.2009.06.012.
YANG J K. Nonlinear Waves in Integrable and Nonintegrable Systems[M]. America: SIAM, 2010.
AGRAWAL G P. Nonlinear Fiber Optics[M]. Amsterdam: Elsevier, 2019.
LI P F, MALOMED B A, MIHALACHE D. Symmetry breaking of spatial Kerr solitons in fractional dimension[J]. Chaos Solitons & Fractals, 2020, 132: 109602. DOI: 10.1016/j.chaos.2020.109602http://dx.doi.org/10.1016/j.chaos.2020.109602.
LI P F, LI R J, DAI C Q. Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction[J]. Optics Express, 2021, 29: 3193-3210. DOI:10.1364/OE.415028http://dx.doi.org/10.1364/OE.415028.
LI P F, MALOMED B A, MIHALACHE D. Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity[J]. Chaos Solitons & Fractals,2020, 137: 109783. DOI: 10.1016/j.chaos.2020.109783http://dx.doi.org/10.1016/j.chaos.2020.109783.
LI P F, MALOMED B A, MIHALACHE D. Symmetry-breaking bifurcations and ghost states in the fractional nonlinear Schrödinger equation with a PT-symmetric potential[J]. Optics Letters, 2021, 46: 3267-3270. DOI:10.1364/OL.428254http://dx.doi.org/10.1364/OL.428254.
RODRIGUES A, LI K, ACHILLEOS V,et al. PT-symmetric double well potentials revisited: bifurcations, stability and dynamics [J]. Romanian Reports in Physics, 2013, 65: 5-26. DOI: 10.48550/arXiv.1207.1066http://dx.doi.org/10.48550/arXiv.1207.1066.
CARTARIUS H, HAAG D, DAST D,et al. Nonlinear Schrödinger equation for a PT-symmetric delta-function double well [J]. Journal of Physics A-Mathematical and Theoretical, 2012, 45(44), 444008. DOI:10.1088/1751-8113/45/44/444008http://dx.doi.org/10.1088/1751-8113/45/44/444008.
SUSANTO H, KUSDIANTARA R, LI N, et al. Snakes and ghosts in a parity-time-symmetric chain of dimers [J]. Physical Review E, 2018, 97: 062204. DOI:10.1103/PhysRevE.97.062204http://dx.doi.org/10.1103/PhysRevE.97.062204.
ZHONG M,WANG L, LI P F,et al. Spontaneous symmetry breaking and ghost states supported by the fractional PT-symmetric saturable nonlinear Schrödinger equation[J]. Chaos, 2023, 33 (1): 013106. DOI: 10.1063/5.0128910http://dx.doi.org/10.1063/5.0128910.
ZHONG M, YAN Z Y. Spontaneous symmetry breaking and ghost states in two-dimensional fractional nonlinear media with non-Hermitian potential[J]. Communications Physics, 2023, 6(1): 92. DOI: 10.1038/s42005-023-01212-1http://dx.doi.org/10.1038/s42005-023-01212-1.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构