浏览全部资源
扫码关注微信
结构可控先进功能材料及其制备教育部重点实验室,华东理工大学化学与分子工程学院,上海 200237
[ "王琪,教授,博士生导师,国家优秀青年基金获得者,上海市“浦江人才”。获授权中国专利7项,在Adv. Mater.、Adv. Funct. Mater.、Natl. Sci. Rev.、CCS Chem.、Chem. Sci.、Biomaterials等杂志上发表SCI论文50余篇。先后入选中国抗癌协会纳米肿瘤学专业委员会委员、中国医药生物技术协会造影技术分会委员、上海市药学会会员、上海药学会药剂学青年专委会委员、中国医药卫生文化协会医工融合分会委员。Email: wangqi@ecust.edu.cn" ]
[ "朱为宏,教授,博士生导师,中国科学院院士。现任华东理工大学副校长、精细化工研究所所长。国家杰出青年基金获得者,科技部重点研发项目首席科学家,曾入选教育部长江学者特聘教授、中组部万人计划科技创新领军人才、国务院特殊津贴专家、上海市科技精英、教育部新世纪优秀人才、上海市学术带头人。迄今已在Science、Nature、Nature Photonics、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Chem、Adv. Mater.、Matter、Nature Commun.、Energy Environ. Sci.、National Science Review等期刊上发表SCI论文350余篇,共被SCI引用近2.5万余次,H指数为84,科睿唯安化学领域“高被引科学家”。申请中国发明专利36项,其中28项已授权,曾获国家自然科学奖二等奖两项、上海市自然科学奖一等奖两项、上海市科技进步奖一等奖、上海市牡丹奖等。Email: whzhu@ecust.edu.cn" ]
纸质出版日期:2024-06-15,
收稿日期:2024-04-07,
修回日期:2024-05-24,
移动端阅览
刘继红,王雨薇,王琪等.两亲性聚集诱导发光荧光探针设计策略及应用[J].新兴科学和技术趋势,2024,3(2):101-127.
LIU Jihong,WANG Yuwei,WANG Qi,et al.Design strategy and application of amphiphilic aggregation-induced emission fluorescent probe[J].Emerging Science and Technology,2024,3(2):101-127.
刘继红,王雨薇,王琪等.两亲性聚集诱导发光荧光探针设计策略及应用[J].新兴科学和技术趋势,2024,3(2):101-127. DOI: 10.12405/j.issn.2097-1486.2024.02.001.
LIU Jihong,WANG Yuwei,WANG Qi,et al.Design strategy and application of amphiphilic aggregation-induced emission fluorescent probe[J].Emerging Science and Technology,2024,3(2):101-127. DOI: 10.12405/j.issn.2097-1486.2024.02.001.
荧光探针具有灵敏度高、成本低廉、响应快速和可原位实时监控等优点,是生物学和医学等众多领域的重要研究手段。与传统具有聚集诱导淬灭效应的荧光探针相比,聚集诱导发光(Aggregation-induced emission,AIE)荧光探针展示出了使用浓度范围宽、光稳定性好、分辨率高等显著优势。两亲性AIE荧光探针进一步提升了生物相容性、靶向性和检测信噪比,在生物化学检测领域展示出很大的潜力。本文以两亲性AIE荧光探针的分子设计为出发点,从ROS与GSH检测、金属离子检测、活性酶检测、细胞器成像、肿瘤诊断、肿瘤光动力治疗六个方面总结了其在化学传感与生物应用领域的最新研究进展,并对未来的发展方向与前景进行了展望。
Fluorescent probes, having the advantages of high sensitivity, low cost, fast response, in situ monitoring and real-time imaging, are imperative research tools in many fields such as biology and medicine. Compared with traditional fluorescent probes, which having the aggregation-induced quenching effect, aggregation-induced emission (AIE) fluorescent probes show the significant merits of wide application concentration, good photostability and high resolution. Amphiphilic AIE fluorescent probes further improve biocompatibility, targeting, and signal-to-noise ratio of detection, and show great potentials in the field of biochemical detection. Starting from the molecular design of amphiphilic AIE fluorescent probes, this paper summarizes the latest research progress in the field of chemical sensing and biological applications from six aspects: ROS and GSH detection, metal ion detection, active enzyme detection, organelle imaging, tumor diagnosis, tumor photodynamic therapy. In the end, it looks forward to the prospect and the future development directions.
荧光探针聚集诱导发光两亲性生物成像
fluorescence probeaggregation-induced emissionamphiphilicbioimaging
LI H, KIM H, XU F, et al. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook[J]. Chemical Society Reviews, 2022, 51(5):1795-1835. DOI:10.1039/D1CS00307Khttp://dx.doi.org/10.1039/D1CS00307K.
SUNA G, ERDEMIR E, LIV L, et al. Multi-channel detection of Au(III) ions by a novel rhodamine based probe[J]. Sensors and Actuators B: Chemical, 2022, 360:131658. DOI:10.1016/j.snb.2022.131658http://dx.doi.org/10.1016/j.snb.2022.131658.
YAN L, ZHANG Y, XU B, et al. Fluorescent nanoparticles based on AIE fluorogens for bioimaging[J]. Nanoscale, 2016, 8(5):2471-2487. DOI:10.1039/C5NR05051Khttp://dx.doi.org/10.1039/C5NR05051K.
LUO J, XIE Z, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications, 2001(18):1740-1741. DOI:10.1039/B105159Hhttp://dx.doi.org/10.1039/B105159H.
CHEN M, CHEN R, SHI Y, et al. Malonitrile-functionalized tetraphenylpyrazine: aggregation-induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism[J]. Advanced Functional Materials, 2018, 28(6):1704689. DOI:10.1002/adfm.201704689http://dx.doi.org/10.1002/adfm.201704689.
SHAO A, XIE Y, ZHU S, et al. Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects[J]. Angewandte Chemie International Edition, 2015, 54(25):7275-7280. DOI:10.1002/anie.201501478http://dx.doi.org/10.1002/anie.201501478.
CUI Y, YUAN C, TAN H, et al. Plasmon-enhanced fluorescent sensor based on aggregation-induced emission for the study of protein conformational transformation[J]. Advanced Functional Materials, 2019, 29(10):1807211. DOI:10.1002/adfm.201807211http://dx.doi.org/10.1002/adfm.201807211.
NING Z W, WU S Z, LIU G J, et al. Water-soluble AIE-active fluorescent organic nanoparticles: design, preparation and application for specific detection of cysteine over homocysteine and glutathione in living cells[J]. Chemistry-An Asian Journal, 2019, 14(13):2220-2224. DOI:10.1002/asia.201900551http://dx.doi.org/10.1002/asia.201900551.
WANG D, MA C, ZHOU X, et al. Self-dispersible fluorescent probe with aggregation-induced emission feature for sequence detection of Fe3+ and Ca2+[J]. Colloid and Interface Science Communications, 2021, 40:100358. DOI:10.1016/j.colcom.2020.100358http://dx.doi.org/10.1016/j.colcom.2020.100358.
CHEN Z, DING Z, ZHANG G, et al. Construction of thermo-responsive elastin-like polypeptides (ELPs)-aggregation-induced-emission (AIE) conjugates for temperature sensing[J]. Molecules, 2018, 23(7):1725. DOI:10.3390/molecules23071725http://dx.doi.org/10.3390/molecules23071725.
TSUTSUMI N, ITO A, NIKO Y, et al. Glycolipid-Type Amphiphiles with a Small Anilinochloromaleimide-Based Luminogen Exhibiting Aggregation-Induced Emission[J]. ChemistrySelect, 2022, 7(42): e202202559. DOI:10.1002/slct.202202559http://dx.doi.org/10.1002/slct.202202559.
NHIEN P Q, CHOU W-L, CUC T T K, et al. Multi-stimuli responsive FRET processes of bifluorophoric AIEgens in an amphiphilic copolymer and its application to cyanide detection in aqueous media[J]. ACS Applied Materials & Interfaces, 2020, 12(9):10959-10972. DOI:10.1021/acsami.9b21970http://dx.doi.org/10.1021/acsami.9b21970.
PAKHIRA M, CHATTERJEE D P, MALLICK D, et al. Reversible Stimuli-Dependent Aggregation-Induced Emission from a “Nonfluorescent” Amphiphilic PVDF Graft Copolymer[J]. Langmuir, 2021, 37(16): 4953-4963. DOI:10.1021/acs.langmuir.1c00310http://dx.doi.org/10.1021/acs.langmuir.1c00310.
NOBE S, YAMAMOTO K, MIYAKAWA H, et al. Sulfonium-cation-containing aggregation-induced emission block copolymers: self-assembly, multicolor emission, and detection for DNA polyplexes[J]. European Polymer Journal, 2023, 197: 112359. DOI:10.1016/j.eurpolymj.2023.112359http://dx.doi.org/10.1016/j.eurpolymj.2023.112359.
LIN F, LIU H, ZHOU Q, et al. Amphiphilic alginate-based fluorescent polymer nanoparticles: Fabrication and multifunctional applications[J]. International Journal of Biological Macromolecules, 2021, 183:2152-2161. DOI:10.1016/j.ijbiomac.2021.05.211http://dx.doi.org/10.1016/j.ijbiomac.2021.05.211.
YUAN X, WANG Z, LI L, et al. Novel fluorescent amphiphilic copolymer probes containing azo-tetraphenylethylene bridges for azoreductase-triggered release[J]. Materials Chemistry Frontiers, 2019, 3(6):1097-1104. DOI:10.1039/C8QM00672Ehttp://dx.doi.org/10.1039/C8QM00672E.
KULKARNI B, QUTUB S, LADELTA V, et al. AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging[J]. Biomacromolecules, 2021, 22(12): 5243-5255. DOI:10.1021/acs.biomac.1c01165http://dx.doi.org/10.1021/acs.biomac.1c01165.
ZHENG W, YANG G, JIANG S-T, et al. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(ii) metallacycle and its self-assembly behaviour[J]. Materials Chemistry Frontiers, 2017, 1(9):1823-1828. DOI:10.1039/C7QM00107Jhttp://dx.doi.org/10.1039/C7QM00107J.
DAI D, LI Z, YANG J, et al. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal[J]. Journal of the American Chemical Society, 2019, 141(11):4756-4763. DOI:10.1021/jacs.9b01546http://dx.doi.org/10.1021/jacs.9b01546.
ZHU Z, WANG Q, LIAO H, et al. Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP)[J]. National Science Review, 2021, 8(6):nwaa198. DOI:10.1093/nsr/nwaa198http://dx.doi.org/10.1093/nsr/nwaa198.
LYU Y, CHEN X, WANG Q, et al. Monitoring autophagy with Atg4B protease-activated aggregation-induced emission probe[J]. Advanced Functional Materials, 2022, 32(6):2108571. DOI:10.1002/adfm.202108571http://dx.doi.org/10.1002/adfm.202108571.
MA B, XU H, ZHUANG W, et al. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation[J]. ACS Nano, 2020, 14(5):5862-5873. DOI: 10.1021/acsnano.0c01012http://dx.doi.org/10.1021/acsnano.0c01012.
NIE K, DONG B, SHI H, et al. Facile construction of AIE-based FRET nanoprobe for ratiometric imaging of hypochlorite in live cells[J]. Journal of Luminescence, 2020, 220:117018. DOI:10.1016/j.jlumin.2019.117018http://dx.doi.org/10.1016/j.jlumin.2019.117018.
YUAN Y, WANG D, LONG W, et al. Ratiometric fluorescent detection of hypochlorite in aqueous solution and living cells using an ionic probe with aggregation-induced emission feature[J]. Sensors and Actuators B: Chemical, 2021, 330:129324. DOI:10.1016/j.snb.2020.129324http://dx.doi.org/10.1016/j.snb.2020.129324.
JIANG G, LI C, LIU X, et al. Lipid droplet-targetable fluorescence guided photodynamic therapy of cancer cells with an activatable AIE-active fluorescent probe for hydrogen peroxide[J]. Advanced Optical Materials, 2020, 8(20):2001119. DOI: 10.1002/adom.202001119http://dx.doi.org/10.1002/adom.202001119.
LI X, XU W, YANG Z, et al. A lipid droplet-targeted multifunctional AIE-active fluorescent probe for hydrogen peroxide detection and imaging-guided photodynamic therapy[J]. Sensors and Actuators B: Chemical, 2023, 375:132892. DOI: 10.1016/j.snb.2022.132892http://dx.doi.org/10.1016/j.snb.2022.132892.
LANG W, CHEN L-Z, CHEN Y, et al. A GSH-activated AIE-based polymer photosensitizer for killing cancer cells[J]. Talanta, 2023, 258:124473. DOI:10.1016/j.talanta.2023.124473http://dx.doi.org/10.1016/j.talanta.2023.124473.
ZHANG R, YUAN Y, LIANG J, et al. Fluorogen-Peptide Conjugates with Tunable Aggregation-Induced Emission Characteristics for Bioprobe Design[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14302-14310. DOI:10.1021/am5036048http://dx.doi.org/10.1021/am5036048.
HUANG J, QIN H, LIANG H, et al. An AIE polymer prepared via aldehyde-hydrazine step polymerization and the application in Cu2+ and S2- detection[J]. Polymer, 2020, 202:122663. DOI:10.1016/j.polymer.2020.122663http://dx.doi.org/10.1016/j.polymer.2020.122663.
WANG D, ZHOU X, MA C, et al. An amphiphilic fluorogen with aggregation-induced emission characteristic for highly sensitive and selective detection of Cu2+ in aqueous solution and biological system[J]. Arabian Journal of Chemistry, 2021, 14(10):103351. DOI:10.1016/j.arabjc.2021.103351http://dx.doi.org/10.1016/j.arabjc.2021.103351.
HE X, WANG X, ZHANG L, et al. Sensing and intracellular imaging of Zn2+ based on affinity peptide using an aggregation induced emission fluorescence “switch-on” probe[J]. Sensors and Actuators B: Chemical, 2018, 271:289-299. DOI: 10.1016/j.snb.2018.05.082http://dx.doi.org/10.1016/j.snb.2018.05.082.
NIE K, XU S, DUAN X, et al. Diketopyrrolopyrrole-doped hybrid FONs as two-photon absorbing and dual-emission fluorescent nanosensors for Hg2+[J]. Sensors and Actuators B: Chemical, 2018, 265:1-9. DOI:10.1016/j.snb.2018.03.026http://dx.doi.org/10.1016/j.snb.2018.03.026.
ZHOU G, ZHANG X, NI X-L. Tuning the amphiphilicity of terpyridine-based fluorescent probe in water: Assembly and disassembly-controlled Hg2+ sensing, removal, and adsorption of H2S[J]. Journal of Hazardous Materials, 2020, 384:121474. DOI:10.1016/j.jhazmat.2019.121474http://dx.doi.org/10.1016/j.jhazmat.2019.121474.
LI X, PAN C, CAO J, et al. An AIE-active probe for monitoring calcium-rich biological environment with high signal-to-noise and long-term retention in situ[J]. Biomaterials, 2022, 289:121778. DOI:10.1016/j.biomaterials.2022.121778http://dx.doi.org/10.1016/j.biomaterials.2022.121778.
WANG X, JIANG Q, MAN Y, et al. A novel amphiphilic pH-responsive AIEgen for highly sensitive detection of protamine and heparin[J]. Sensors and Actuators B: Chemical, 2018, 261:233-240. DOI:10.1016/j.snb.2018.01.130http://dx.doi.org/10.1016/j.snb.2018.01.130.
NIU Y, ZHANG B, GALLUZZI M. An amphiphilic aggregate-induced emission polyurethane probe for in situ actin observation in living cells[J]. Journal of Colloid and Interface Science, 2021, 582:1191-1202. DOI:10.1016/j.jcis.2020.08.113http://dx.doi.org/10.1016/j.jcis.2020.08.113.
PANDEY S P, JHA P, NADIMETLA D N, et al. A tetracationic aggregation induced emission-based probe for efficient and improved detection of Heparin [J]. Sensors and Actuators B: Chemical, 2022, 353: 131016. DOI:10.1016/j.snb.2021.131016http://dx.doi.org/10.1016/j.snb.2021.131016.
ZHOU T, WANG Q, LIU M, et al. An AIE-based enzyme-activatable fluorescence indicator for Western blot assay: Quantitative expression of proteins with reproducible stable signal and wide linear range[J]. Aggregate, 2021, 2(2):e22. DOI: 10.1002/agt2.22http://dx.doi.org/10.1002/agt2.22.
ZHU Z, WANG Q, CHEN X, et al. An enzyme-activatable aggregation-induced-emission probe: Intraoperative pathological fluorescent diagnosis of pancreatic cancer via specific cathepsin E[J]. Advanced Materials, 2022, 34(3):2107444. DOI:10.1002/adma.202107444http://dx.doi.org/10.1002/adma.202107444.
DONG L, ZHANG M-Y, HAN H-H, et al. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters[J]. Chemical Science, 2022, 13(1):247-256. DOI:10.1039/D1SC05057Ehttp://dx.doi.org/10.1039/D1SC05057E.
XU L, GAO H, ZHAN W, et al. Dual aggregations of a near-Infrared aggregation-induced emission luminogen for enhanced imaging of Alzheimer’s disease[J]. Journal of the American Chemical Society, 2023, 145(50):27748-27756. DOI:10.1021/jacs.3c10255http://dx.doi.org/10.1021/jacs.3c10255.
ZHU Z, CHEN X, LIAO H, et al. Microalbuminuria sensitive near-infrared AIE probe for point-of-care evaluating kidney diseases[J]. Aggregate, 2024, e526. DOI:10.1002/agt2.526http://dx.doi.org/10.1002/agt2.526.
YAN C, DAI J, YAO Y, et al. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice[J]. Nature Protocols, 2023, 18(4):1316-1336. DOI:s41596-022-00789-1http://dx.doi.org/s41596-022-00789-1.
ZHANG T, LI Y, ZHENG Z, et al. In situ monitoring apoptosis process by a self-reporting photosensitizer[J]. Journal of the American Chemical Society, 2019, 141(14):5612-5616. DOI:10.1021/jacs.9b00636http://dx.doi.org/10.1021/jacs.9b00636.
RAO Q, YANG M, LIU G, et al. New AIE-active terpyridyl-based pyridinium salt with good water-soluble: Membrane-permeable probe for cellular endoplasmic reticulum imaging[J]. Dyes and Pigments, 2019, 169:60-65. DOI:10.1016/j.dyepig.2019.04.035http://dx.doi.org/10.1016/j.dyepig.2019.04.035.
XU F-Z, WANG C-Y, WANG Q, et al. Water-soluble bright NIR AIEgens with hybrid ROS for wash-free mitochondrial “off-on” imaging and photodynamic therapy[J]. Chemical Communications, 2022, 58(44):6393-6396. DOI:10.1039/D2CC01559Ehttp://dx.doi.org/10.1039/D2CC01559E.
ZHANG J, WANG Q, GUO Z, et al. High-fidelity trapping of spatial-temporal mitochondria with rational design of aggregation-induced emission probes[J]. Advanced Functional Materials, 2019, 29(16): 1808153. DOI:10.1002/adfm.201808153http://dx.doi.org/10.1002/adfm.201808153.
ZHANG W, HUANG Y, CHEN Y, et al. Amphiphilic tetraphenylethene-based pyridinium salt for selective cell-membrane imaging and room-light-induced special reactive oxygen species generation[J]. ACS Applied Materials & Interfaces, 2019, 11(11):10567-10577. DOI:10.1021/acsami.9b00643http://dx.doi.org/10.1021/acsami.9b00643.
ZHANG Y, WANG Q, ZHU Z, et al. Spatiotemporal visualization of cell membrane with amphiphilic aggregation-induced emission-active sensor[J]. CCS Chemistry, 2021, 4(5):1619-1632. DOI:10.31635/ccschem.021.202100967http://dx.doi.org/10.31635/ccschem.021.202100967.
WANG X, YANG Y, YANG F, et al. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging[J]. Polymer, 2017, 118:75-84. DOI:10.1016/j.polymer.2017.04.064http://dx.doi.org/10.1016/j.polymer.2017.04.064
MA H, ZHAO C, MENG H, et al. Multifunctional organic fluorescent probe with aggregation-induced emission characteristics: Ultrafast tumor monitoring, two-photon imaging, and image-guide photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(7):7987-7996. DOI: 10.1021/acsami.0c21309http://dx.doi.org/10.1021/acsami.0c21309.
LI Q, ZHU W, GONG S, et al. Selective visualization of tumor cell membranes and tumors with a viscosity-sensitive plasma membrane probe[J]. Analytical Chemistry, 2023, 95(18):7254-7261. DOI:10.1021/acs.analchem.3c00220http://dx.doi.org/10.1021/acs.analchem.3c00220.
LI X, ZHA M, LI Y, et al. Sub-10 nm aggregation-induced emission quantum dots assembled by microfluidics for enhanced tumor targeting and reduced retention in the liver[J]. Angewandte Chemie International Edition, 2020, 59(49):21899-21903. DOI:10.1002/anie.202008564http://dx.doi.org/10.1002/anie.202008564.
SONG S, ZHAO Y, KANG M, et al. An NIR-II excitable AIE small molecule with multimodal phototheranostic features for orthotopic breast cancer treatment[J]. Advanced Materials, 2024, 36(14):2309748. DOI:10.1002/adma.202309748http://dx.doi.org/10.1002/adma.202309748.
GU K, QIU W, GUO Z, et al. An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells[J]. Chemical Science, 2019, 10(2):398-405. DOI:10.1039/C8SC04266Ghttp://dx.doi.org/10.1039/C8SC04266G.
LIU Z, WANG Q, QIU W, et al. AIE-active luminogens as highly efficient free-radical ROS photogenerator for image-guided photodynamic therapy[J]. Chemical Science, 2022, 13(12):3599-3608. DOI:10.1039/D2SC00067Ahttp://dx.doi.org/10.1039/D2SC00067A.
WANG Y, LIAO J, LYU Y, et al. An AIE photosensitizer with simultaneous Type I and Type II ROS generation: Efficient bacterial elimination and hypoxic tumor ablation[J]. Advanced Functional Materials, 2023, 33(33):2301692. DOI:10.1002/adfm.202301692http://dx.doi.org/10.1002/adfm.202301692.
NIU N, YU Y, ZHANG Z, et al. A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics[J]. Chemical Science, 2022, 13(20):5929-5937. DOI:10.1039/D2SC01260Jhttp://dx.doi.org/10.1039/D2SC01260J.
WANG J, ZHU X, ZHANG J, et al. AIE-based theranostic agent: In situ tracking mitophagy prior to late apoptosis to guide the photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(2):1988-1996. DOI:10.1021/acsami.9b15577http://dx.doi.org/10.1021/acsami.9b15577.
ZHANG Y, WANG C-X, HUANG S-W. Aggregation-induced emission (AIE) polymeric micelles for imaging-guided photodynamic cancer therapy[J]. Nanomaterials, 2018, 8(11):921. DOI:10.3390/nano8110921http://dx.doi.org/10.3390/nano8110921.
CHENG G, WANG H, ZHANG C, et al. Multifunctional nano-photosensitizer: A carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility[J]. Chemical Engineering Journal, 2020, 390:124447. DOI:10.1016/j.cej.2020.124447http://dx.doi.org/10.1016/j.cej.2020.124447.
SAURAJ, KANG J H, LEE O, et al. Novel aggregation-induced emission-photosensitizers with built-in capability of mitochondria targeting and glutathione depletion for efficient photodynamic therapy[J]. Nanoscale, 2023, 15(10): 4882-4892. DOI:10.1039/D2NR06593Bhttp://dx.doi.org/10.1039/D2NR06593B.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构