图1 木质素的三种主要组成单元及其模型结构
纸质出版日期:2024-03-15,
收稿日期:2024-02-17,
修回日期:2024-03-02
扫 描 看 全 文
引用本文
阅读全文PDF
木质素是自然界最丰富的芳香化合物来源。然而,受到木质素结构复杂性和异质性的限制,木质素的解聚和转化一直是其可持续利用的主要难题。新兴的合成生物学为木质素有效增值提供了良好的技术支持。本文简要介绍了木质素解聚的多种策略,重点讨论了合成生物学在木质素转化为高附加值化学品的应用,并展望了今后木质素生物转化的研究和应用的关键挑战。
Lignin is an abundant source of aromatics in nature. However, the sustainable utilization of lignin is continuously confined by its degradation and transformation due to the structural complexity and intrinsic heterogeneity. The emerging synthetic biology provides technical support for lignin valorization. This review introduces briefly several strategies of lignin depolymerization and discusses comprehensively the application of synthetic biology in converting lignin to value-added chemicals. In addition, the challenges of research and application in lignin biotransformation is prospected.
随着对传统化石能源的需求日益提高,天然木质纤维素成为了可持续能源和化学品生产的重要替代来源。木质纤维素主要包含纤维素,半纤维素和木质素。其中,纤维素和半纤维素成键方式单一,得到了广泛的研究和利用,可以用于生物乙醇、乳糖和其他平台化合物的生产[
木质素是一种由苯丙烷单元连接的无定形网状聚合物,是植物界中储量仅次于纤维素的第二大生物质资源,是芳香化合物最大的可再生来源。
木质素的结构是限制木质素高效转化的重要因素之一。木质素的基本结构单元是三种苯丙烷单体,即对香豆醇(H)、松柏醇(S)和芥子醇(G)[
图1 木质素的三种主要组成单元及其模型结构
Figure 1 three units and model structure of lignin
木质素高值化利用的重要前提是木质纤维素组分的分馏和木质素的解聚。目前已经开发了多种技术来有效分离植物生物质中的木质素并对其进行解聚,进一步生产分子量较小的芳香低聚物和芳香化合物单体[
化学法处理生物质可以提高其可降解性,从而被广泛地应用到了目前的生物精炼过程中。这些策略中通常使用了酸、碱、氨、氧化试剂、有机溶剂、离子液体等试剂进行木质纤维素的处理,可以改变木质素结构或者对木质素进行解聚。其中,NaOH处理策略由于其成本低、工业使用度高等优势被深入研究。Thring等[
最近,木质素优先分馏技术被提出并得到了广泛的研究。还原催化分馏(RCF)是木质素解聚中最有效和最具工业潜力的策略之一[
简而言之,低分子量木质素或芳烃更有利于生物转化,因此,开发能够有效解聚木质素、降低木质素缩合程度、产出高浓度单体的化学分馏方法至关重要。
木质素是一种复杂的天然高分子物质,在植物细胞壁中起到重要的支持作用。在自然界中,以真菌和细菌为主的微生物进化出了复杂强大的酶催化系统,催化木质素分解和转化,也被称为“酶促燃烧”[
漆酶是一种含铜离子的多酚氧化酶,可以氧化多种木质素衍生的芳烃[
过氧化物酶是细菌中另一类重要的木质素分解酶,以H2O2为氧化剂,催化木质素分解[
染料脱色过氧化物酶(DyP)是一类新发现的血红素过氧化物酶,可分为A型、B型、C型和D型,A型、B型和C型在细菌中被广泛发现[
总之,上述多种微生物胞外酶表现出了非特异性裂解木质素的能力,这种高效的木质素解聚能力在研究中被进一步加强,并在不同程度应用到了木质素降解中。除了上述木质素分解酶,其他木质素分解酶也被证实参与木质素的解聚。如在细菌和真菌中新发现的β-酯酶,可以降解木质素中最丰富的β-芳基醚[
综上所述,化学法和生物法均可实现木质素的分解,产生适合进一步转化的低分子量木质素,从而提高了木质素的综合利用度。然而,大多数的木质素化学分馏过程会引发分解的木质素单体的再缩合反应,形成复杂的异质化合物形式的木质素流。这些异质木质素限制了木质素升值的潜力。此外,尽管生物法转化木质素是一种绿色的转化策略,由于木质素分解酶分泌有限,细菌解聚木质素产生芳香族化合物的能力难以充分发挥。
因此,开发组合分馏来产生适合生物转化的木质素衍生化合物成为研究热点。这些组合分馏策略可以通过两种方式实现。一种是多种化学解聚方法的组合。Du等[
在自然界中,微生物进化出了丰富多样的木质素降解代谢途径。随着科技的进步,越来越多的木质素代谢的生物合成途径被鉴定出来。微生物对木质素的代谢主要通过“生物漏斗”的形式,通常分为上游通路和下游通路[
合成生物学旨在设计、构建和优化代谢途径,或重新设计人工途径来改良微生物,促进木质素的生物转化。目前,利用合成生物学进行木质素高值化得到了广泛的关注。木质素生物转化产生的高附加值化学品主要包括芳香族化学品、木质素衍生芳烃的环形裂解化学品和生物活性分子等(
图2 木质素解聚产物的“生物漏斗”转化
Figure 2 Biological funneling of depolymerized lignin
近年来,微生物对于木质素的代谢和转化路径得到了广泛的研究,并成功获得了一些芳香物质,如芳香族酚酸[
芳香族羧酸是上游通路中常见的产物,其中包括了对羟基苯甲酸(p-Hydroxybenzoic acid,pHBA),PCA,GA,香草酸,水杨酸,肉桂酸等。
pHBA具有很强的抗菌性能,同时也被广泛地用作一种工业平台化学品。从木质素转化为pHBA主要依赖对香豆基木质素的转化,特别是p-CA。p-CA可以通过三种代谢途径转化为pHBA,分别是辅酶A依赖型氧化途径、辅酶A非依赖型途径和非氧化脱羧途径[
4VP及其他2种构型的乙烯基木质素单元广泛用于食品、香精和香水行业,此外,4VP也被视为是石油基苯乙烯的生物基替代品,用于聚合物制造[
香兰素因其特殊的芳香风味,广泛应用食品和香水制造[
除上述芳香类化学品外,木质素分解代谢的关键中间体,p-CA,PCA或儿茶酚等可经下游通路催化裂解,打开芳环,并进一步转化为其他高附加值生物制品,如生物塑料或生物基聚合物单体,生物柴油等[
聚羟基链烷酸酯(PHAs)是一种性能优异的生物塑料。这种塑料与传统石油基塑料的性质相似,但具有良好的生物相容性和生物可降解性,受到了工业与医疗领域的重点关注。恶臭假单胞菌可有效地将木质素衍生的芳烃通过β-酮已二酸代谢途径转化为PHAs[
顺,顺-粘康酸(cis,cis-Muconic acid,MA)是具有一对共轭双键的二羧酸,是重要的平台化学品。木质素衍生的芳烃经由细菌的“生物漏斗”路径,分解代谢产生儿茶酚作为中间体。随后中间体儿茶酚被儿茶酚1,2-双加氧酶CatA催化邻位裂解转化为MA[
此外,在工程菌中进行代谢工程或引进新的代谢途径等实现多样化的化学品合成,如L-乳酸[
苯丙烷衍生物[
木质素是一种丰富的可再生资源,是自然界中芳香族化合物的最大来源。木质素分馏和解聚的开发和优化有效改善了预处理产生木质素流的性质,富集了低分子量、溶性的木质素解聚单体。这些芳烃更容易被微生物吸收转化为高附加值化学品。受木质素分解代谢机制的启发,合成生物学利用天然代谢途径或设计新的人工合成途径,实现从木质素和木质素衍生的芳烃合成多种高附加值化学品。本文简述了从木质素衍生芳烃生产芳香族化学品、芳香族分子的环形裂解产物和衍生的增值化学品,生物活性分子的高值路径及其代表性的产品。其中,一些细菌天然表现出对质素优异的降解能力,如红球菌RHA1和恶臭假单胞菌KT2440,因而被进一步改良成高效细胞工厂,用于木质素增值。此外,在模式生物如大肠杆菌和酿酒酵母中成功构建人工木质素转化途径也吸引了较多关注和研究。这些令人振奋的成果证明合成生物学为实现木质素增值的提供了新的机遇。
尽管如此,异质性仍是木质素增值的主要挑战。高效催化木质素解聚为收率可观的芳香单体对实现高附加值化学品生物合成至关重要。因此,木质素增值的多个步骤仍需系统的优化。首先,开发优化木质素分馏和解聚的工艺,将木质素彻底分解为低分子量和水溶性木质素前体,有助于提高木质素增值的原子经济性。木质素降解酶及木质素降解途径的发掘将是木质素分馏和解聚的重要替代之一。生物法解聚木质素避免了对木质素结构的改性,有利于提供更多水溶性芳香单体,并具备整合进模式菌株中的潜力。其次,探索构建木质素转化为新化学品的合成途径。“生物漏斗”相关的生物合成途径元件的鉴定与改良以及“生物漏斗”外的芳香化合物增值代谢途径的发掘,有助于设计新型人工合成路径,丰富现有的木质素转化途径。此外,探索或构建能够高效利用木质素的微生物底盘细胞是一项漫长而艰巨的任务。其中,作为纤维素发酵乙醇的菌株,酿酒酵母是一种潜力巨大的工程菌株。未来,可以整合各种代谢途径到酿酒酵母中,实现木质素、纤维素和半纤维素的全生物质利用[
SOROKINA K N, TARAN O P, MEDVEDEVA T B, et al. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol[J]. Chemsuschem,2017,10(3):562-574. DOI:10.1002/cssc.201601244. [百度学术]
TAKKELLAPATI S, LI T, GONZALEZ M A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery[J]. Clean Technol Envir, 2018,20(7):1615-1630. DOI:10.1007/s10098-018-1568-5. [百度学术]
BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Ind Crop Prod, 2019,139(0926-6690):111526. DOI:10.1016/j.indcrop.2019.111526. [百度学术]
MANKAR A R, MODAK A, PANT K K. Recent Advances in the Valorization of Lignin: A Key Focus on Pretreatment, Characterization, and Catalytic Depolymerization Strategies for Future Biorefineries[J]. Adv Sustain Syst,2022,6(3).DOI:10.1002/adsu.202100299. [百度学术]
MELRO E, FILIPE A, SOUSA D, et al. Revisiting lignin: a tour through its structural features, characterization methods and applications[J]. New J Chem,2021,45(16):6986-7013. DOI:10.1039/d0nj06234k. [百度学术]
XU Z X, LEI P, ZHAI R, et al. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products[J]. Biotechnol Biof Biop,2019,12(1):32. DOI:10.1186/s13068-019-1376-0. [百度学术]
VERMAAS J V, DIXON R A, CHEN F, et al. Passive membrane transport of lignin-related compounds[J]. P Natl Acad Sci USA,2019,116(46):23117-23123. DOI:10.1073/pnas.1904643116. [百度学术]
THRING R W. Alkaline-Degradation of Alcell(R) Lignin[J]. Biomass Bioenerg,1994,7(1-6):125-130. DOI:10.1016/0961-9534(94)00051-T. [百度学术]
YUAN Z, CHENG S, LEITCH M, et al. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresource Technology,2010,101(23):9308-9313. DOI:10.1016/j.biortech.2010.06.140. [百度学术]
MAHMOOD N, YUAN Z, SCHMIDT J, et al. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters[J]. Bioresource Technology, 2013,139:13-20. DOI:10.1016/j.biortech.2013.03.199. [百度学术]
UPTON B M, KASKO A M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective[J]. Chemical Reviews,2016,116(4):2275-2306. DOI:10.1021/acs.chemrev.5b00345. [百度学术]
RAMZAN H, USMAN M, NADEEM F, et al. Depolymerization of lignin: Recent progress towards value-added chemicals and biohydrogen production[J]. Bioresource Technology,2023,386:129492. DOI:10.1016/j.biortech.2023.129492. [百度学术]
BARTLING A W, STONE M L, HANES R J, et al. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation[J]. Energ Environ Sci,2021,14(8):4147-4168. DOI:10.1039/d1ee01642c. [百度学术]
RENDERS T, VAN DEN BOSSCHE G, VANGEEL T, et al. Reductive catalytic fractionation: State of the art of the lignin-first biorefinery[J]. Curr Opin Biotech,2019,56:193-201. DOI:10.1016/j.copbio.2018.12.005. [百度学术]
李治宇, 逯炀炀, 王文文, 等.“木质素优先解聚”策略下生物质定向解聚研究进展[J]. 农业工程学报,2024,40(1):130-142. DOI:10.11975/j.issn.1002-6819.202307007. [百度学术]
THI H D, VAN AELST K, VAN DEN BOSCH S, et al. Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC x GC-FID/MS[J].Green Chem,2022,24(1):191-206. DOI:10.1039/d1gc03822b. [百度学术]
LI X, XU Y, ALORKU K, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis,2023,550:113551. DOI:10.1016/j.mcat.2023.113551. [百度学术]
ZHAO Z M, MENG X, SCHEIDEMANTLE B, et al. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion[J]. Bioresource Technology,2022,347:126367. DOI:10.1016/j.biortech.2021.126367. [百度学术]
LIU Z H, HAO N, WANG Y Y, et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization[J]. Nature Communications,2021,12(1):3912. DOI:10.1038/s41467-021-23920-4. [百度学术]
SINGHANIA R R, PATEL A K, RAJ T, et al. Lignin valorisation via enzymes: A sustainable approach[J]. Fuel,2022, 311. DOI:10.1016/j.fuel.2021.122608. [百度学术]
SUGANO Y, YOSHIDA T. DyP-Type Peroxidases: Recent Advances and Perspectives[J]. International Journal of Molecular Sciences,2021,22(11):5556. DOI:10.3390/ijms22115556. [百度学术]
LIU Y, LUO G, NGO H H, et al. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review[J]. Bioresource Technology,2020,298:122511. DOI:10.1016/j.biortech.2019.122511. [百度学术]
CHIO C L, SAIN M, QIN W S. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renew Sust Energ Rev, 2019,107:232-249. DOI:10.1016/j.rser.2019.03.008. [百度学术]
ZHANG W R, WANG W W, WANG J H, et al. Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1[J]. Appl Environ Microb,2021,87(23):e0135521. DOI:10.1128/AEM.01355-21. [百度学术]
GUAN Z B, LUO Q, WANG H R, et al. Bacterial laccases: promising biological green tools for industrial applications[J]. Cellular and Molecular Life Sciences,2018,75(19):3569-3592. DOI:10.1007/s00018-018-2883-z. [百度学术]
LIU H, LIU Z H, ZHANG R K, et al. Bacterial conversion routes for lignin valorization[J]. Biotechnology Advances,2022,60:108000. DOI:10.1016/j.biotechadv.2022.108000. [百度学术]
PARK G W, GONG G, JOO J C, et al. Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review[J]. Renew Sust Energ Rev,2022,157.DOI:10.1016/j.rser.2021.112025. [百度学术]
BUSSE N, CZERMAK P. Role and Application of Versatile Peroxidase (VP) for Utilizing Lignocellulose in Biorefineries[M].GUPTA V K. Microbial Enzymes in Bioconversions of Biomass. Cham; Springer International Publishing. 2016: 271-300. [百度学术]
SINGH A K, IQBAL H M N, CARDULLO N, et al. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology[J]. International Journal of Biological Macromolecules,2023,242(PT 3):124968. DOI:10.1016/j.ijbiomac.2023.124968. [百度学术]
BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances,2019,37(6):107360. DOI:10.1016/j.biotechadv.2019.02.016. [百度学术]
YANG Y, SONG W Y, HUR H G, et al. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin[J]. International Journal of Biological Macromolecules,2019,124:200-208. DOI:10.1016/j.ijbiomac.2018.11.144. [百度学术]
KHAN S I, ZADA N S, SAHINKAYA M, et al. Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5[J]. Enzyme and Microbial Technology,2021,151:109917. DOI:10.1016/j.enzmictec.2021.109917. [百度学术]
AHMAD M, ROBERTS J N, HARDIMAN E M, et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry,2011,50(23):5096-5107. DOI:10.1021/bi101892z. [百度学术]
SINGH R, GRIGG J C, QIN W, et al. Improved Manganese-Oxidizing Activity of DypB, a Peroxidase from a Lignolytic Bacterium[J]. Acs Chem Biol,2013,8(4):700-706. DOI:10.1021/cb300608x. [百度学术]
MARINOVIC M, NOUSIAINEN P, DILOKPIMOL A, et al. Selective Cleavage of Lignin beta-O-4 Aryl Ether Bond by beta-Etherase of the White-Rot Fungus Dichomitus squalens[J]. Acs Sustain Chem Eng,2018,6(3):2878-2882. DOI:10.1021/acssuschemeng.7b03619. [百度学术]
DU X, TRICKER A W, YANG W S, et al. Oxidative Catalytic Fractionation and Depolymerization of Lignin in a One-Pot Single-Catalyst System[J]. Acs Sustain Chem Eng, 2021,9(23):7719-7727. DOI:10.1021/acssuschemeng.0c08448. [百度学术]
TIMOKHIN V I, REGNER M, MOTAGAMWALA A H, et al. Production of p-Coumaric Acid from Corn GVL-Lignin[J]. Acs Sustain Chem Eng,2020,8(47):17427-17438. DOI:10.1021/acssuschemeng.0c05651. [百度学术]
QIAN S, GAO S, LI J, et al. Effects of combined enzymatic hydrolysis and fed-batch operation on efficient improvement of ferulic acid and p-coumaric acid production from pretreated corn straws[J]. Bioresource Technology,2022,366:128176. DOI:10.1016/j.biortech.2022.128176. [百度学术]
LIU Z H, SHINDE S, XIE S X, et al. Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries[J]. Sustain Energ Fuels,2019,3(8):2024-2037. DOI:10.1039/c9se00021f. [百度学术]
WEN J L, SUN S L, YUAN T Q, et al. Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis[J]. Green Chem,2015,17(3):1589-1596. DOI:10.1039/c4gc01889c. [百度学术]
ZHAO C, XIE S X, PU Y Q, et al. Synergistic enzymatic and microbial lignin conversion[J]. Green Chem,2016,18(5):1306-1312. DOI:10.1039/c5gc01955a. [百度学术]
LIU Z H, OLSON M L, SHINDE S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment[J]. Green Chem,2017,19(20):4939-4955. DOI:10.1039/c7gc02057k. [百度学术]
GU J, QIU Q, YU Y, et al. Bacterial transformation of lignin: key enzymes and high-value products[J]. Biotechnol Biof Biop,2024,17(1):2. DOI:10.1186/s13068-023-02447-4. [百度学术]
ZHANG R, ZHAO C H, CHANG H C, et al. Lignin valorization meets synthetic biology[J]. Engineering in Life Sciences,2019,19(6):463-470. DOI:10.1002/elsc.201800133. [百度学术]
MARTINKOVA L, GRULICH M, PATEK M, et al. Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review[J]. Biomolecules,2023,13(5). DOI:10.3390/biom13050717. [百度学术]
LIU R Y, LIU Z H, LI B Z, et al. Biotransformation of lignin into 4-vinylphenol derivatives toward lignin valorization[J]. Green Chem, 2024,26(4):1770-1789. DOI:10.1039/d3gc03763k. [百度学术]
LI M, WILKINS M. Lignin bioconversion into valuable products: fractionation, depolymerization, aromatic compound conversion, and bioproduct formation[J]. Systems Microbiology and Biomanufacturing,2021,1(2):166-185. DOI:10.1007/s43393-020-00016-6. [百度学术]
JUNG D H, KIM E J, JUNG E, et al. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1[J]. Biotechnology and Bioengineering,2016,113(7):1493-1503. DOI:10.1002/bit.25908. [百度学术]
CAI C G, XU Z X, ZHOU H R, et al. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation[J]. Sci Adv,2021,7(36):eabg4585. DOI:10.1126/sciadv.abg4585. [百度学术]
FU B X, XIAO G Z, ZHANG Y, et al. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid[J]. J Agr Food Chem,2021,69(38):11336-11341. DOI:10.1021/acs.jafc.1c03960. [百度学术]
WU W H, LIU F, SINGH S. Toward engineering E. coli with an autoregulatory system for lignin valorization[J]. P Natl Acad Sci USA,2018,115(12):2970-2975. DOI:10.1073/pnas.1720129115. [百度学术]
MIAO L T, LI Q Y, DIAO A P, et al. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation.[J]. Appl Microbiol Biot,2015,99(12):5163-5173. DOI:10.1007/s00253-015-6497-1. [百度学术]
KAMBOURAKIS S, DRATHS K M, FROST J W. Synthesis of gallic acid and pyrogallol from glucose: Replacing natural product isolation with microbial catalysis[J]. J Am Chem Soc,2000,122(37):9042-9043. DOI:DOI 10.1021/ja000853r. [百度学术]
SHENG X, LIND M E, HIMO F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase[J]. The FEBS Journal,2015,282(24):4703-4713. DOI:10.1111/febs.13525. [百度学术]
HU H F, LI L L, DING S J. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives[J]. Appl Microbiol Biot,2015,99(12):5071-5081. DOI:10.1007/s00253-014-6313-3. [百度学术]
RODRIGUEZ A, MEADOWS J A, SUN N, et al. Evaluation of bacterial hosts for conversion of lignin-derived p-coumaric acid to 4-vinylphenol[J]. Microb Cell Fact,2021,20(1):181. DOI:10.1186/s12934-021-01670-8. [百度学术]
GUO Y, ALVIGINI L, TRAJKOVIC M, et al. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound[J]. Nature Communications,2022,13(1):7195. DOI:10.1038/s41467-022-34912-3. [百度学术]
MARIC I, GUO Y M, FÜRST M J L J, et al. A one-pot, whole-cell biocatalysis approach for vanillin production using lignin oil[J]. Adv Synth Catal,2023,365(22):3987-3995. DOI:10.1002/adsc.202300868. [百度学术]
SAINSBURY P D, HARDIMAN E M, AHMAD M, et al. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1[J]. Acs Chem Biol,2013,8(10):2151-2156. DOI:10.1021/cb400505a. [百度学术]
XIN X, ZHANG R-K, LIU S-C, et al. Engineering yeast to convert lignocellulose into vanillin[J]. Chemical Engineering Journal,2024,485:149815. DOI:10.1016/j.cej.2024.149815. [百度学术]
DU C J, RIOS-SOLIS L, WARD J M, et al. Evaluation of CV2025 ω-transaminase for the bioconversion of lignin breakdown products into value-added chemicals: synthesis of vanillylamine from vanillin[J]. Biocatal Biotransfor,2014,32(5-6):302-313. DOI:10.3109/10242422.2014.976632. [百度学术]
OKAI N, MIYOSHI T, TAKESHIMA Y, et al. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli[J]. Appl Microbiol Biot,2016,100(1):135-145.DOI:10.1007/s00253-015-6976-4. [百度学术]
WANG X P, LIN L, DONG J D, et al. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing[J]. Appl Environ Microb,2018,84(18):e01469. DOI:10.1128/AEM.01469-18. [百度学术]
SALVACHUA D, RYDZAK T, AUWAE R, et al. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin[J]. Microbial Biotechnology,2020,13(3):813. DOI:10.1111/1751-7915.13547. [百度学术]
BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin[J]. Microb Cell Fact, 2018, 17(1):1-14. DOI:10.1186/s12934-018-0963-2. [百度学术]
ALMQVIST H, VERAS H, LI K N, et al. Muconic Acid Production Using Engineered Pseudomonas putida KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin[J]. Acs Sustain Chem Eng,2021,9(24):8097-8106. DOI:10.1021/acssuschemeng.1c00933. [百度学术]
VARDON D R, FRANDEN M A, JOHNSON C W, et al. Adipic acid production from lignin[J]. Energ Environ Sci,2015,8(2):617-628. DOI:10.1039/c4ee03230f. [百度学术]
JOHNSON C W, BECKHAM G T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin[J]. Metab Eng,2015,28:240-247. DOI:10.1016/j.ymben.2015.01.005. [百度学术]
SPENCE E M, CALVO-BADO L, MINES P, et al. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin[J]. Microb Cell Fact, 2021,20(1):15. DOI:10.1186/s12934-020-01504-z. [百度学术]
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. J Integr Plant Biol,2021,63(1):180-209. DOI:10.1111/jipb.13054. [百度学术]
LAN H N, LIU R Y, LIU Z H, et al. Biological valorization of lignin to flavonoids[J]. Biotechnology Advances,2023,64:108107. DOI:10.1016/j.biotechadv.2023.108107. [百度学术]
ZHU S Y, LIU S C, ZHANG C X, et al. Pathway and enzyme engineering for the bioconversion of lignin derivatives into homoeriodictyol in Saccharomyces cerevisiae[J]. Green Chem, 2024,26(9):5260-5272. DOI:10.1039/D4GC00183D. [百度学术]
KALLSCHEUER N, VOGT M, MARIENHAGEN J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism[J]. Acs Synth Biol,2017,6(3):410-415. DOI:10.1021/acssynbio.6b00291. [百度学术]
74
浏览量
98
下载量
0
CSCD
相关文章
相关作者
相关机构