浏览全部资源
扫码关注微信
1.山西大学 合成生物学学院,山西 太原 030006
2.山西大学 生物技术研究所,山西 太原 030006
3.中国农业科学院 深圳农业基因组研究所,深圳 518000
[ "戴俊彪,男,研究员;博士,博士生导师;国家杰出青年科学基金获得者,广东省合成基因组学重点实验室及深圳合成基因组学重点实验室创始主任,主要研究方向是开发基因和基因组的合成、组装及转移技术,通过基因组的设计构建解析基因组功能,并进行合成生物的改造和优化等。近5年以通讯/共同通讯作者身份在Science、Nature Communications、Cell Research、Developmental Cell等国际著名杂志发表论文60余篇。戴俊彪研究员是人工合成酵母基因组国际计划(Sc2.0)和基因组编写计划(GP-write)的中方主要参与者,牵头发起了“国际基因组编写计划•中国(GP-write China)”国际合作项目。2017年3月与Sc2.0合作团队在《科学》杂志上以封面和专刊的形式发表了五篇染色体合成相关文章,入选2017年中国科学十大进展。Email:junbiao.dai@siat.ac.cn" ]
纸质出版日期:2024-03-15,
收稿日期:2024-01-27,
修回日期:2024-02-13,
扫 描 看 全 文
任秋蓉,高晓娟,戴俊彪.植物碱基编辑器的发展与挑战[J].新兴科学和技术趋势,2024,3(1):75-82.
REN Qiurong,GAO Xiaojuan,DAI Junbiao.Development and challenges of plant base editors[J].Emerging Science and Technology,2024,3(1):75-82.
任秋蓉,高晓娟,戴俊彪.植物碱基编辑器的发展与挑战[J].新兴科学和技术趋势,2024,3(1):75-82. DOI: 10.12405/j.issn.2097-1486.2024.01.008.
REN Qiurong,GAO Xiaojuan,DAI Junbiao.Development and challenges of plant base editors[J].Emerging Science and Technology,2024,3(1):75-82. DOI: 10.12405/j.issn.2097-1486.2024.01.008.
CRISPR-Cas基因编辑工具因其简单、高效和普适的特性被迅速应用于动、植物突变体定向创制中。在Cas蛋白上融合其他结构域,如激活结构域、抑制结构域、脱氨酶、反转录酶等赋予CRISPR-Cas系统新功能。其中,碱基编辑器可以精准地在DNA或者RNA中特定位点进行碱基替代,且不会造成DNA双链断裂,从而有效地造成基因突变。自碱基编辑器发明以来,研究人员通过改变Cas蛋白、脱氨酶、构建策略等,旨在解决碱基替换类型、编辑窗口、编辑特异性、编辑范围、序列偏好性、编辑纯度等碱基编辑器关键特性。本文综述了植物中碱基编辑器的发展,综合评价不同编辑器的优势和局限,并讨论它们在农业方面的潜在应用。
RISPR-Cas genome editing tool has gained popularity due to its simplicity, efficiency, and universality in creating targeted mutations in animals and plants. By fusing additional structural domains, e. g. activation domains, inhibition domains, deaminases, reverse transcriptases, etc. onto Cas proteins, the CRISPR-Cas system can be endowed with novel functions. Among them, base editors can precisely replace bases at specific sites in DNA or RNA without causing double-strand breaks, thereby effectively inducing genetic mutations. Since the invention of base editors, researchers have been working on modifying Cas proteins, deaminases, and construction strategies to address key characteristics of base editors, including the types of base substitutions, editing window, editing specificity, editing range, sequence preferences, and editing purity. This article presents an overview of various base editors developed in plants, evaluates comprehensively their strengths and limitations, and discusses the potential applications in agriculture.
CRISPR-Cas脱氨酶碱基编辑器植物
CRISPR-Casdeaminasesbase editorsplant
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. DOI: 10.1126/science.1225829http://dx.doi.org/10.1126/science.1225829.
CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. DOI: 10.1126/science.1231143http://dx.doi.org/10.1126/science.1231143.
MOLLA K A, YANG Y N. Predicting CRISPR/Cas9-Induced Mutations for Precise Genome Editing[J]. Trends in Biotechnology, 2020, 38(2): 136-141. DOI: 10.1016/j.tibtech.2019.08.002http://dx.doi.org/10.1016/j.tibtech.2019.08.002.
HUANG T K, PUCHTA H. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination[J]. Plant Cell Reports, 2019, 38(4): 443-453. DOI: 10.1007/s00299-019-02379-0http://dx.doi.org/10.1007/s00299-019-02379-0.
KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. DOI: 10.1038/nature17946http://dx.doi.org/10.1038/nature17946.
LI J, SUN Y, DU J, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529. DOI: 10.1016/j.molp.2016.12.001http://dx.doi.org/10.1016/j.molp.2016.12.001.
ZONG Y, WANG Y, LI C, et al. Precise base editing in rice, wheat and maize with a Cas9- cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 438-440. DOI: 10.1038/nbt.3811http://dx.doi.org/10.1038/nbt.3811.
QIN L, LI J, WANG Q, et al. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(1): 45-56. DOI: 10.1111/pbi.13168http://dx.doi.org/10.1111/pbi.13168.
CAI Y, CHEN L, ZHANG Y, et al. Target base editing in soybean using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(10): 1996-1998. DOI: 10.1111/pbi.13386http://dx.doi.org/10.1111/pbi.13386.
TIAN S, JIANG L, CUI X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Reports, 2018, 37(9): 1353-1356. DOI: 10.1007/s00299-018-2299-0http://dx.doi.org/10.1007/s00299-018-2299-0.
WU J, CHEN C, XIAN G, et al. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing[J]. Plant Biotechnology Journal, 2020, 18(9): 1857-1859. DOI: 10.1111/pbi.13368http://dx.doi.org/10.1111/pbi.13368.
NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. DOI: 10.1126/science.aaf8729http://dx.doi.org/10.1126/science.aaf8729.
TANG X, REN Q, YANG L, et al. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing[J]. Plant Biotechnology Journal, 2019, 17(7): 1431-1445. DOI: 10.1111/pbi.13068http://dx.doi.org/10.1111/pbi.13068.
WU Y, XU W, WANG F, et al. Increasing cytosine base editing scope and efficiency with engineered Cas9-PmCDA1 fusions and the modified sgRNA in rice[J]. Frontiers in Genetics, 2019, 10: 379. DOI: 10.3389/fgene.2019.00379http://dx.doi.org/10.3389/fgene.2019.00379.
SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 441-443. DOI: 10.1038/nbt.3833http://dx.doi.org/10.1038/nbt.3833.
LI G, SRETENOVIC S, EISENSTEIN E, et al. Highly efficient C-to-T and A-to-G base editing in a Populus hybrid[J]. Plant Biotechnology Journal, 2021, 19(6): 1086-1088. DOI: 10.1111/pbi.13581http://dx.doi.org/10.1111/pbi.13581.
GUYON-DEBAST A, ALBORESI A, TERRET Z, et al. A blueprint for gene function analysis through base editing in the model plant Physcomitrium (Physcomitrella) patens[J]. New Phytologist, 2021, 230(3): 1258-1272. DOI: 10.1111/nph.17171http://dx.doi.org/10.1111/nph.17171.
REN B, YAN F, KUANG Y, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant[J]. Molecular Plant, 2018, 11(4): 623-626. DOI: 10.1016/j.molp.2018.01.005http://dx.doi.org/10.1016/j.molp.2018.01.005.
ZONG Y, SONG Q, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, 36(10): 950–953. DOI: 10.1038/nbt.4261http://dx.doi.org/10.1038/nbt.4261.
XING S, CHEN K, ZHU H, et al. Fine-tuning sugar content in strawberry[J]. Genome Biology, 2020, 21(1): 230. DOI: 10.1186/s13059-020-02146-5http://dx.doi.org/10.1186/s13059-020-02146-5.
CHENG H T, HAO M Y, DING B L, et al. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system[J]. Plant Biotechnology Journal, 2021, 19(1): 87-97. DOI: 10.1111/pbi.13444http://dx.doi.org/10.1111/pbi.13444.
JIN S, FEI H, ZHU Z, et al. Rationally designed APOBEC3B cytosine base editors with improved specificity[J]. Molecular Cell, 2020, 79(5): 728-740. DOI: 10.1016/j.molcel.2020.07.005http://dx.doi.org/10.1016/j.molcel.2020.07.005.
LI J, XU R, QIN R, et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants[J]. Molecular Plant, 2021, 14(2): 352-360. DOI: 10.1016/j.molp.2020.12.017http://dx.doi.org/10.1016/j.molp.2020.12.017.
REN Q, SRETENOVIC S, LIU G, et al. Improved plant cytosine base editors with high editing activity, purity, and specificity[J]. Plant Biotechnology Journal, 2021, 19(10): 2052-2068. DOI: 10.1111/pbi.13635http://dx.doi.org/10.1111/pbi.13635.
HUA K, TAO X, HAN P, et al. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences[J]. Molecular Plant, 2019, 12(7): 1003-1014. DOI: 10.1016/j.molp.2019.03.009http://dx.doi.org/10.1016/j.molp.2019.03.009.
QIN R, LI J, LI H, et al. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing[J]. Plant Biotechnology Journal, 2019, 17(4): 706-708. DOI: 10.1111/pbi.13047http://dx.doi.org/10.1111/pbi.13047.
HUA K, TAO X, ZHU J K. Expanding the base editing scope in rice by using Cas9 variants[J]. Plant Biotechnology Journal, 2019, 17(2): 499-504. DOI: 10.1111/pbi.12993http://dx.doi.org/10.1111/pbi.12993.
REN Q, SRETENOVIC S, LIU S, et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox[J]. Nature Plants, 2021, 7(1): 25-33. DOI: 10.1038/s41477-020-00827-4http://dx.doi.org/10.1038/s41477-020-00827-4.
XU Z, KUANG Y, REN B, et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition[J]. Genome Biology, 2021, 22(1): 6. DOI: 10.1186/s13059-020-02231-9http://dx.doi.org/10.1186/s13059-020-02231-9.
XU W, SONG W, YANG Y, et al. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice[J]. BMC Plant Biology, 2019, 19(1): 511. DOI: 10.1186/s12870-019-2131-1http://dx.doi.org/10.1186/s12870-019-2131-1.
ZENG D, LI X, HUANG J, et al. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice[J]. Plant Biotechnology Journal, 2020, 18(6): 1348-1350. DOI: 10.1111/pbi.13293http://dx.doi.org/10.1111/pbi.13293.
JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292-295. DOI: 10.1126/science.aaw7166http://dx.doi.org/10.1126/science.aaw7166.
DOMAN J L, RAGURAM A, NEWBY G A, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nature Biotechnology, 2020, 38(5): 620-628. DOI: 10.1038/s41587-020-0414-6http://dx.doi.org/10.1038/s41587-020-0414-6.
RANDALL L B, SRETENOVIC S, WU Y, et al. Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor[J]. Plant Physiology, 2021, 187(1): 73-87. DOI: 10.1093/plphys/kiab264http://dx.doi.org/10.1093/plphys/kiab264.
MOLLA K A, YANG Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications[J]. Trends in Biotechnology, 2019, 37(10): 1121-1142. DOI: 10.1016/j.tibtech.2019.03.008http://dx.doi.org/10.1016/j.tibtech.2019.03.008.
GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. DOI: 10.1038/nature24644http://dx.doi.org/10.1038/nature24644.
HUA K, TAO X, YUAN F, et al. Precise A.T to G.C base editing in the rice genome[J]. Molecular Plant, 2018, 11(4): 627-630. DOI: 10.1016/j.molp.2018.02.007http://dx.doi.org/10.1016/j.molp.2018.02.007.
LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19(1): 59. DOI: 10.1186/s13059-018-1443-zhttp://dx.doi.org/10.1186/s13059-018-1443-z.
WANG M, WANG Z, MAO Y, et al. Optimizing base editors for improved efficiency and expanded editing scope in rice[J]. Plant Biotechnology Journal, 2019, 17(9): 1697-1699. DOI: 10.1111/pbi.13124http://dx.doi.org/10.1111/pbi.13124.
WANG Z, LIU X, XIE X, et al. ABE8e with polycistronic tRNA-gRNA expression cassette sig-nificantly improves adenine base editing efficiency in Nicotiana benthamiana[J]. International Journal of Molecular Sciences, 2021, 22(11): 5663. DOI: 10.3390/ijms22115663http://dx.doi.org/10.3390/ijms22115663.
YAN D, REN B, LIU L, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants[J]. Molecular Plant, 2021, 14(5): 722-731. DOI: 10.1016/j.molp.2021.02.007http://dx.doi.org/10.1016/j.molp.2021.02.007.
WU Y, REN Q, ZHONG Z, et al. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice[J]. Plant Biotechnology Journal, 2022, 20(9): 1670-1682. DOI: 10.1111/pbi.13838http://dx.doi.org/10.1111/pbi.13838.
RICHTER M F, ZHAO K T, ETON E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 2020, 38(7): 883-891. DOI: 10.1038/s41587-020-0453-zhttp://dx.doi.org/10.1038/s41587-020-0453-z.
CHEN L, ZHANG S, XUE N N, et al. Engineering a precise adenine base editor with minimal bystander editing[J]. Nature Chemical Biology, 2023, 19(1): 101-110. DOI: 10.1038/s41589-022-01163-8http://dx.doi.org/10.1038/s41589-022-01163-8.
KURT I C, ZHOU R, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. DOI: 10.1038/s41587-020-0609-xhttp://dx.doi.org/10.1038/s41587-020-0609-x.
ZHAO D, LI J, LI S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. DOI: 10.1038/s41587-020-0592-2http://dx.doi.org/10.1038/s41587-020-0592-2.
SRETENOVIC S, LIU S, LI G, et al. Exploring C-to-G base editing in rice, tomato, and poplar[J]. Frontiers in genome editing, 2021, 3: 756766. DOI: 10.3389/fgeed.2021.756766http://dx.doi.org/10.3389/fgeed.2021.756766.
TIAN Y F, SHEN R D, LI Z R, et al. Efficient C-to-G editing in rice using an optimized base editor[J]. Plant Biotechnology Journal, 2022, 20(7): 1238-1240. DOI: 10.1111/pbi.13841http://dx.doi.org/10.1111/pbi.13841.
LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. DOI: 10.1038/s41587-019-0393-7http://dx.doi.org/10.1038/s41587-019-0393-7.
GRUNEWALD J, ZHOU R, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. DOI: 10.1038/s41587-020-0535-yhttp://dx.doi.org/10.1038/s41587-020-0535-y.
ZHANG X, ZHU B, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. DOI: 10.1038/s41587-020-0527-yhttp://dx.doi.org/10.1038/s41587-020-0527-y.
SAKATA R C, ISHIGURO S, MORI H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nature Biotechnology, 2020, 38(7): 865-869. DOI: 10.1038/s41587-020-0509-0http://dx.doi.org/10.1038/s41587-020-0509-0.
TONG H, WANG X, LIU Y, et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase[J]. Nature Biotechnology, 2023, 41(8): 1080-1084. DOI: 10.1038/s41587-022-01595-6http://dx.doi.org/10.1038/s41587-022-01595-6.
WU X, REN B, LIU L, et al. Adenine base editor incorporating the N-methylpurine DNA glycosylase MPGv3 enables efficient A-to-K base editing in rice[J]. Plant Communications, 2023, 4(6): 100668. DOI: 10.1016/j.xplc.2023.100668http://dx.doi.org/10.1016/j.xplc.2023.100668.
LI Y, LI S, LI C, et al. Engineering a plant A-to-K base editor with improved performance by fusion with a transactivation module[J]. Plant Communications, 2023, 4(6): 100667. DOI: 10.1016/j.xplc.2023.100667http://dx.doi.org/10.1016/j.xplc.2023.100667.
XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. DOI: 10.1111/pbi.13433http://dx.doi.org/10.1111/pbi.13433.
HUNZIKER J, NISHIDA K, KONDO A, et al. Multiple gene substitution by Target-AID base-editing technology in tomato[J]. Scientific Reports, 2020, 10(1): 20471. DOI: 10.1038/s41598-020-77379-2http://dx.doi.org/10.1038/s41598-020-77379-2.
ZHANG R, LIU J, CHAI Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nature Plants, 2019, 5(5): 480-485. DOI: 10.1038/s41477-019-0405-0http://dx.doi.org/10.1038/s41477-019-0405-0.
WU Y, HE Y, SRETENOVIC S, et al. CRISPR-BETS: a base-editing design tool for generating stop codons[J]. Plant Biotechnology Journal, 2022, 20(3): 499-510. DOI: 10.1111/pbi.13732http://dx.doi.org/10.1111/pbi.13732.
KUANG Y, LI S, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular Plant, 2020, 13(4): 565-572. DOI: 10.1016/j.molp.2020.01.010http://dx.doi.org/10.1016/j.molp.2020.01.010.
HUA K, TAO X, LIANG W, et al. Simplified adenine base editors improve adenine base editing efficiency in rice[J]. Plant Biotechnology Journal, 2019, 18(3): 770-778. DOI: 10.1111/pbi.13244http://dx.doi.org/10.1111/pbi.13244.
LI Z, XIONG X, WANG F, et al. Gene disruption through base editing-induced messenger RNA missplicing in plants[J]. New Phytologist, 2019, 222(2): 1139-1148. DOI: 10.1111/nph.15647http://dx.doi.org/10.1111/nph.15647.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构