浏览全部资源
扫码关注微信
1.山西大学应用生物学研究所,山西 太原 030031
2.山西大学 生命科学学院,山西 太原 030031
3.核酸生物农药山西省重点实验室,山西 太原 030031
4.山西大学合成生物学学院,山西 太原 030031
5.中国科学院深圳先进技术研究院深圳合成生物学研究所,细胞与基因线路设计中心,广东 深圳 518055
[ "张婷婷,博士,山西大学教授,博士生导师,合成生物学专业主任,山西省优秀青年基金获得者,“三晋英才”优秀青年人才。2013年毕业于西北农林科技大学,本硕博连读,获遗传学博士学位,同年入职山西大学应用生物学研究所。2016—2018年于中科院上海植生所从事博士后研究,2019—2020年于德国科隆大学发育与进化生物学专业做访问学者,2021年晋升为教授。目前主要研究方向为昆虫胚胎表皮发育进化和昆虫合成生物学及未来食品研发,主持国家自然基金面上项目1项和山西省优秀青年人才培育项目1项。完成国家自然基金青年基金、博士后基金和山西省优秀人才科技创新项目等5项。以第一作者在进化生物学顶级期刊Molecular Biology and Evolution(IF=14.97)、昆虫学Top期刊Insect biochemistry and molecular biology等国内外高水平研究期刊发表学术论文10余篇。Email: zhangyanqiu3520@sxu.edu.cn" ]
纸质出版日期:2024-03-15,
收稿日期:2024-01-07,
修回日期:2023-02-11,
扫 描 看 全 文
李舒静,杨欣,井惠敏等.资源昆虫基因编辑在合成生物农业的应用[J].新兴科学和技术趋势,2024,3(1):62-74.
LI Shujing,YANG Xin,JING Huimin,et al.Advancements in insect gene editing and their utilization in synthetic biology[J].Emerging Science and Technology,2024,3(1):62-74.
李舒静,杨欣,井惠敏等.资源昆虫基因编辑在合成生物农业的应用[J].新兴科学和技术趋势,2024,3(1):62-74. DOI: 10.12405/j.issn.2097-1486.2024.01.007.
LI Shujing,YANG Xin,JING Huimin,et al.Advancements in insect gene editing and their utilization in synthetic biology[J].Emerging Science and Technology,2024,3(1):62-74. DOI: 10.12405/j.issn.2097-1486.2024.01.007.
合成生物学采用工程设计理念,对生物体进行有目标的设计改造乃至重新合成,创建出特定功能或
非自然功能的人工生物或人造产品。世界各国都在加快合成生物技术在农业中的应用,以应对全球气候变化、人口增长、环境污染和资源匮乏等问题,促进“双碳”目标的实现。昆虫是自然界中种类最多、数量庞大的种群,其中直翅目(Orthoptera)农业害虫飞蝗(
Locusta migratoria
)及双斑蟋(
Gryllus bimaculatus
)易于培养,富含蛋白质、脂肪、氨基酸、矿物质和维生素,营养价值高,可成为农业生产中重要的蛋白质来源,已成为新型资源昆虫。昆虫生产耗能少,其产生等量蛋白所消耗的水、饲料及温室气体排放量远远少于传统的畜禽养殖,已被欧盟和日本等国家作为未来食品进行研究和开发。以CRISPR/Cas9为代表的基因编辑是合成生物学领域的重要技术,可在基因组水平实现基因定点敲除、插入和修饰,进而调控基因表达和物种性状,其在资源昆虫中的推广和应用,可促进资源昆虫优质种群和品系开发,助力合成生物农业快速发展。
Synthetic biology uses the concept of "engineering design" to design and even re-synthesize organisms in order to create artificial organisms and products with specific and unnatural functions. Countries around the world are accelerating the application of synthetic biotechnology in agriculture to cope with global climate change, population growth, environmental pollution and resource scarcity, and to promote the realization of the "dual carbon" goal. There are lots of insects in nature, among them, the Orthoptera agricultural pests
Locusta migratoria
and
Gryllus bimaculatus
are easy to cultivate and rich in protein, fat, amino acids, minerals and vitamins. They are important protein source in agricultural production, and has become the new resource insect. Insect production consumes less energy. To produce the same amount of protein, the insect production consumes far less water, feed and greenhouse gas emissions than traditional livestock and poultry farming. It has been researched and developed as a future food in the European Union countries and Japan. Gene editing technology represented by CRISPR/Cas9 is an important technology in the field of synthetic biology. It can achieve targeted gene knockout, insertion, and modification at the genomic level to regulate gene expression and species traits. The promotion and application in resource insects will promote the development of high-quality resource insect populations and strains, and help the rapid development of synthet
ic biology agriculture.
合成生物学农业基因编辑飞蝗蟋蟀
synthetic biologyagriculturegene editingLocusta migratoriaGryllus bimaculatus
张娇, 陈江峰, 陈奕璇, 等. 合成功能菌群的构建及其工程化应用[J]. 生物工程学报, 2023, 39(06): 2517-2545. DOI: 10.13345/j.cjb.230062http://dx.doi.org/10.13345/j.cjb.230062.
马丽丽, 赵晏强, 左锟澜, 等. 学科交叉视角下合成生物学研究领域发展态势分析[J]. 科学管理研究, 2023, 41(03): 19-26. DOI: 10.19445/j.cnki.15-1103/g3.2023.03.003http://dx.doi.org/10.19445/j.cnki.15-1103/g3.2023.03.003.
林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. DOI: 10.19586/j.2095-2341.2021.0096http://dx.doi.org/10.19586/j.2095-2341.2021.0096.
张毓珂. 全球化视野下的中国粮食安全问题研究[D]. 太原: 山西师范大学, 2015.
VARSHNEY R K, BOHRA A, YU J, et al. Designing Future Crops: Genomics-Assisted Breeding Comes of Age[J]. Trends in plant science, 2021, 26(6): 631-649. DOI: 10.1016/j.tplants.2021.03.010http://dx.doi.org/10.1016/j.tplants.2021.03.010.
张慧中. 用安全感温暖“老去”的世界[J]. 四川劳动保障, 2016(1): 7.
白献晓, 张健, 李明, 等. 河南省无公害畜禽食品发展现状、问题与对策[J]. 河南农业科学, 2003, 32(7):55-57. DOI: 10.3969/j.issn.1004-3268.2003.07.022http://dx.doi.org/10.3969/j.issn.1004-3268.2003.07.022.
刘艳秋, 张雪, 杜林丽, 等. 可食性昆虫资源及开发前景[J]. 食品研究与开发, 2023, 44(15): 206-211. DOI:10.12161/j.issn.1005-6521.2023.15.030http://dx.doi.org/10.12161/j.issn.1005-6521.2023.15.030.
朱芬, 石志辉. 食用昆虫蛋白的资源特性及开发前景 [J]. 中国食品学报, 2022, 22(06): 44-52. DOI: 10.16429/j.1009-7848.2022.06.005http://dx.doi.org/10.16429/j.1009-7848.2022.06.005.
冯威. 城乡居民对可食用昆虫的营养认知、消费行为与态度[D]. 华中农业大学, 2023. DOI: 10.27158/d.cnki.ghznu.2023.000518http://dx.doi.org/10.27158/d.cnki.ghznu.2023.000518.
李大民. 昆虫产业与昆虫蛋白[J]. 新农业, 2021(14): 20-21.
陆文. 昆虫人类未来的理想粮源[J]. 广东金融电脑, 1998, 17(1): 65.
VAN HUIS A. Edible insects contributing to food security?[J]. Agriculture Food Security, 2015, 4(1): 20. DOI: 10.1186/s40066-015-0041-5http://dx.doi.org/10.1186/s40066-015-0041-5.
杨航, 袁泉, 吕巍巍, 等. 黑水虻幼虫的营养特性及其在水产饲料中的应用进展[J/OL]. 华中农业大学学报, 1-11 [2024-03-17].
向倩, 张蕉南, 罗悦, 等. 酶解蛋白原料替代鱼粉在水产中的应用[J]. 饲料研究, 2023, 46(24): 148-153. DOI: 10.13557/j.cnki.issn1002-2813.2023.24.029http://dx.doi.org/10.13557/j.cnki.issn1002-2813.2023.24.029.
刘敏, 李鹏程, 刘宸, 等. 直翅目三种可食用蝗虫营养成分测定与分析[J]. 食品工业, 2017, 38(10): 286-288.
ABRIL S, PINZóN M, HERNÁNDEZ-CARRIÓN M, et al. Edible Insects in Latin America: A Sustainable Alternative for Our Food Security[J]. Frontiers in Nutrition, 2022, 9: 904812. DOI: 10.3389/fnut.2022.904812http://dx.doi.org/10.3389/fnut.2022.904812.
冯思静, 吴晗, 姜滢, 等. 餐厨垃圾饲养黑水虻虫体脂肪酸组分分析与高值化应用[J]. 环境工程, 2023, 41(S2): 602-604+608.
MUJI無印良品. コオロギが地球を救う?|コオロギチョコ・コオロギせんべい[M]. 2020.
于杰飞. 虫子,人类未来的主食?[N]. 光明日报, 2013-07-20(005).
何小风. 甘肃陇南昆虫资源及其开发利用[J]. 中国林副特产, 2004(06): 45-47. DOI: 10.3969/j.issn.1001-6902.2004.06.026http://dx.doi.org/10.3969/j.issn.1001-6902.2004.06.026.
HALLORAN A, HANBOONSONG Y, ROOS N, et al. Life cycle assessment of cricket farming in north-eastern Thailand[J]. Journal of Cleaner Production, 2017, 156:83-94. DOI: 10.1016/J.JCLEPRO.2017.04.017http://dx.doi.org/10.1016/J.JCLEPRO.2017.04.017.
史东恒, 郝满霞. 中药材混乱品种浅析[J]. 国医论坛, 2009, 24(03): 40-41. DOI: 10.3969/j.issn.1002-1078.2009.03.033http://dx.doi.org/10.3969/j.issn.1002-1078.2009.03.033..
RATCLIFFE N A, MELLO C B, GARCIA E S, et al. Insect natural products and processes: new treatments for human disease[J]. Insect biochemistry and molecular biology, 2011, 41(10): 747-769. DOI: 10.1016/j.ibmb.2011.05.007http://dx.doi.org/10.1016/j.ibmb.2011.05.007.
李晓童, 时连根. 家蚕蛹生物活性肽的药理作用研究进展[C]//推进蚕桑产业传承发展论坛论文集.浙江大学动物科学学院, 2017: 5.
吕文彦, 张育平, 秦雪峰. 我国药用昆虫研究利用概况[J]. 特产研究, 2007, 29(1): 75-78. DOI: 10.3969/j.issn.1001-4721.2007.01.027http://dx.doi.org/10.3969/j.issn.1001-4721.2007.01.027.
驯化虫草大可作为[N]. 广东科技报, 2011-12-24(005).
曹成全. 药用昆虫的开发利用与前景[J]. 农业知识, 2007(21): 27-28.
向玉勇. 我国药用昆虫的研究应用进展[J]. 安徽农业科学, 2009, 37(07): 3014-3016+3022. DOI: 10.13989/j.cnki.0517-6611.2009.07.055http://dx.doi.org/10.13989/j.cnki.0517-6611.2009.07.055.
SCHOLZ J, SUPPMANN S. A re-usable wave bioreactor for protein production in insect cells[J]. MethodsX, 2016, 3: 497-501. DOI: 10.1016/j.mex.2016.08.001http://dx.doi.org/10.1016/j.mex.2016.08.001.
黄克. 利用昆虫细胞及家蚕生物反应器制备诺如病毒VLP疫苗的研究[D]. 南阳师范学院, 2022. DOI: 10.27850/d.cnki.gnysf.2022.000035http://dx.doi.org/10.27850/d.cnki.gnysf.2022.000035.
马三垣. 基于基因组编辑的家蚕丝腺遗传改良与应用研究[D]. 重庆: 西南大学, 2014.
CHEN K, YU Y, ZHANG Z, et al. Engineering a complex, multiple enzyme-mediated synthesis of natural plant pigments in the silkworm, Bombyx mori[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(33): e2306322120. DOI: 10.1073/pnas.2306322120http://dx.doi.org/10.1073/pnas.2306322120.
张叶军. 转基因昆虫的应用前景[J]. 中国农业信息, 2011, 23(11): 23-24. DOI: 10.3969/j.issn.1672-0423.2011.11.012http://dx.doi.org/10.3969/j.issn.1672-0423.2011.11.012.
邹修为. 黑水虻幼虫肠道微生物Y4-39抗菌活性测定及其比较基因组学分析[D]. 长沙: 湖南农业大学, 2020. DOI: 10.27136/d.cnki.ghunu.2020.000195http://dx.doi.org/10.27136/d.cnki.ghunu.2020.000195.
PORTEUS M H, BALTIMORE D. Chimeric nucleases stimulate gene targeting in human cells[J]. Science, 2003, 300(5620): 763. DOI: 10.1126/science.1078395http://dx.doi.org/10.1126/science.1078395.
WOOD A J, LO T W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040): 307. DOI: 10.1126/science.1207773http://dx.doi.org/10.1126/science.1207773.
JIANG F, DOUDNA J A. CRISPR-Cas9 Structures and Mechanisms[J]. Annual review of biophysics, 2017, 46: 505-529. DOI: 10.1146/annurev-biophys-062215-010822http://dx.doi.org/10.1146/annurev-biophys-062215-010822.
CHANG H H Y, PANNUNZIO N R, ADACHI N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nature reviews Molecular cell biology, 2017, 18(8): 495-506. DOI: 10.1038/nrm.2017.48http://dx.doi.org/10.1038/nrm.2017.48.
WRIGHT W D, SHAH S S, HEYER W D. Homologous recombination and the repair of DNA double-strand breaks[J]. The Journal of biological chemistry, 2018, 293(27): 10524-10535. DOI: 10.1074/jbc.TM118.000372http://dx.doi.org/10.1074/jbc.TM118.000372.
赵芙蓉, 尚朝阳, 叶超, 等. 基于CRISPR合成生物传感的研究现状与展望[J]. 中国基础科学, 2023, 25(04): 14-26+32. DOI: 10.3969/j.issn.1009-2412.2023.04.003http://dx.doi.org/10.3969/j.issn.1009-2412.2023.04.003.
SAVIĆ N, SCHWANK G. Advances in therapeutic CRISPR/Cas9 genome editing[J]. Translational research: the journal of laboratory and clinical medicine, 2016, 168: 15-21. DOI: 10.1016/j.trsl.2015.09.008http://dx.doi.org/10.1016/j.trsl.2015.09.008.
OHDE T, MINEMURA T, HIROSE E, et al. Egg Microinjection and Efficient Mating for Genome Editing in the Firebrat Thermobia domestica[J]. Journal of visualized experiments : JOVE, 2020(164). DOI: 10.3791/61885http://dx.doi.org/10.3791/61885.
SHIRAI Y, PIULACHS M D, BELLES X, et al. DIPA-CRISPR is a simple and accessible method for insect gene editing[J]. Cell reports methods, 2022, 2(5): 100215. DOI: 10.1016/j.crmeth.2022.100215http://dx.doi.org/10.1016/j.crmeth.2022.100215.
HEU C C, MCCULLOUGH F M, LUAN J, et al. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci)[J]. The CRISPR journal, 2020, 3(2): 89-96. DOI: 10.1089/crispr.2019.0067http://dx.doi.org/10.1089/crispr.2019.0067.
ADRIANOS S, LORENZEN M, OPPERT B. Metabolic pathway interruption: CRISPR/Cas9-mediated knockout of tryptophan 2,3-dioxygenase in Tribolium castaneum[J]. Journal of insect physiology, 2018, 107: 104-109. DOI: 10.1016/j.jinsphys.2018.03.004http://dx.doi.org/10.1016/j.jinsphys.2018.03.004.
ZHAO S, XING Z, LIU Z, et al. Efficient somatic and germline genome engineering of Bactrocera dorsalis by the CRISPR/Cas9 system[J]. Pest management science, 2019, 75(7): 1921-1932. DOI: 10.1002/ps.5305http://dx.doi.org/10.1002/ps.5305.
YAN Y, ZIEMEK J, SCHETELIG M F. CRISPR/Cas9 mediated disruption of the white gene leads to pigmentation deficiency and copulation failure in Drosophila suzukii[J]. Journal of insect physiology, 2020, 126: 104091. DOI: 10.1016/j.jinsphys.2020.104091http://dx.doi.org/10.1016/j.jinsphys.2020.104091.
BASSETT A R, TIBBIT C, PONTING C P, et al. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System[J]. Cell reports, 2014, 6(6): 1178-1179. DOI: 10.1016/j.celrep.2014.03.017http://dx.doi.org/10.1016/j.celrep.2014.03.017.
XUE W H, XU N, YUAN X B, et al. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Insect biochemistry and molecular biology, 2018, 93: 19-26. DOI: 10.1016/j.ibmb.2017.12.003http://dx.doi.org/10.1016/j.ibmb.2017.12.003.
DE SOUZA PACHECO I, DOSS A A, VINDIOLA B G, et al. Efficient CRISPR/Cas9-mediated genome modification of the glassy-winged sharpshooter Homalodisca vitripennis (Germar)[J]. Scientific reports, 2022, 12(1): 6428. DOI: 10.1038/s41598-022-09990-4http://dx.doi.org/10.1038/s41598-022-09990-4.
CAGLIARI D, SMAGGHE G, ZOTTI M, et al. RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros[J]. Insects, 2020, 11(12): 838. DOI: 10.3390/insects11120838http://dx.doi.org/10.3390/insects11120838.
KONU M, KULMUNI J, VILJAKAINEN L. Genetic modification of the ant Lasius niger using CRISPR-Cas9 technology[J]. Insect molecular biology, 2023, 32(1): 11-25. DOI: 10.1111/imb.12809http://dx.doi.org/10.1111/imb.12809
OPPERT B, DOSSEY A T, CHU F C, et al. The Genome of the Yellow Mealworm, Tenebrio molitor: It’s Bigger Than You Think[J]. Genes, 2023, 14(12): 2209. DOI: 10.3390/genes14122209http://dx.doi.org/10.3390/genes14122209.
DE ROUCK S, MOCCHETTI A, DERMAUW W, et al. SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods[J]. Insect biochemistry and molecular biology, 2024, 165: 104068. DOI: 10.1016/j.ibmb.2023.104068http://dx.doi.org/10.1016/j.ibmb.2023.104068
GUO X, YU Q, CHEN D, et al. 4-Vinylanisole is an aggregation pheromone in locusts[J]. Nature, 2020, 584(7822): 584-588. DOI: 10.1038/s41586-020-2610-4http://dx.doi.org/10.1038/s41586-020-2610-4.
ZHANG T-T, WEN T-M, YUE Y, et al. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. Journal of Integrative Agriculture, 2021, 20(10): 2716-2726. DOI: 10.1016/S2095-3119(21)63736-Xhttp://dx.doi.org/10.1016/S2095-3119(21)63736-X.
岳洋. 基于CRISPR/Cas9技术的飞蝗Dicer家族基因功能研究[D]. 太原: 山西大学, 2021. DOI: 10.27284/d.cnki.gsxiu.2021.000919http://dx.doi.org/10.27284/d.cnki.gsxiu.2021.000919.
LI Y, ZHANG J, CHEN D, et al. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco)[J]. Insect biochemistry and molecular biology, 2016, 79: 27-35. DOI: 10.1016/j.ibmb.2016.10.003http://dx.doi.org/10.1016/j.ibmb.2016.10.003.
MATSUOKA Y, NAKAMURA T, WATANABE T, et al. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus[J]. BioRxiv, 2021. DOI: 10.1101/2021.05.10.441399http://dx.doi.org/10.1101/2021.05.10.441399.
ZHANG M, HU Y, LIU J, et al. CRISPR/Cas9-mediated genome editing of gustatory receptor NlugGr23a causes male sterility in the brown planthopper Nilaparvata lugens[J]. International journal of biological macromolecules, 2023, 241: 124612. DOI: 10.1016/j.ijbiomac.2023.124612http://dx.doi.org/10.1016/j.ijbiomac.2023.124612.
HU X F, ZHANG B, LIAO C H, et al. High-Efficiency CRISPR/Cas9-Mediated Gene Editing in Honeybee (Apis mellifera) Embryos[J]. G3 (Bethesda, Md), 2019, 9(5): 1759-1766. DOI: 10.1534/g3.119.400130http://dx.doi.org/10.1534/g3.119.400130.
KOHNO H, SUENAMI S, TAKEUCHI H, et al. Production of Knockout Mutants by CRISPR/Cas9 in the European Honeybee, Apis mellifera L[J]. Zoological science, 2016, 33(5): 505-512. DOI: 10.2108/zs160043http://dx.doi.org/10.2108/zs160043.
CHAVERRA-RODRIGUEZ D, DALLA BENETTA E, HEU C C, et al. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein[J]. Insect molecular biology, 2020, 29(6): 569-577. DOI: 10.1111/imb.12663http://dx.doi.org/10.1111/imb.12663.
GUI S, TANING C N T, WEI D, et al. First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata[J]. Journal of insect physiology, 2020, 121: 104013. DOI: 10.1016/j.jinsphys.2020.104013http://dx.doi.org/10.1016/j.jinsphys.2020.104013.
ZHENG J C, YUE X R, KUANG W Q, et al. NPC1b as a novel target in controlling the cotton bollworm, Helicoverpa armigera[J]. Pest management science, 2020, 76(6): 2233-2342. DOI: 10.1002/ps.5761http://dx.doi.org/10.1002/ps.5761.
JIN M, PENG Y, PENG J, et al. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. Communications biology, 2023, 6(1): 1064. DOI: 10.1038/s42003-023-05447-0http://dx.doi.org/10.1038/s42003-023-05447-0.
ZHU G H, CHEREDDY S, HOWELL J L, et al. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation[J]. Insect biochemistry and molecular biology, 2020, 122: 103373. DOI: 10.1016/j.ibmb.2020.103373http://dx.doi.org/10.1016/j.ibmb.2020.103373.
FAN S T, WU M Z, LIU C, et al. Azadirachtin Inhibits Nuclear Receptor HR3 in the Prothoracic Gland to Block Larval Ecdysis in the Fall Armyworm, Spodoptera frugiperda[J]. Journal of agricultural and food chemistry, 2023, 71(42): 15497-15505. DOI: 10.1021/acs.jafc.3c05508http://dx.doi.org/10.1021/acs.jafc.3c05508.
ASHOK K, BHARGAVA C N, ASOKAN R, et al. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)[J]. International journal of biological macromolecules, 2023, 253(Pt 2): 126557. DOI: 10.1016/j.ijbiomac.2023.126557http://dx.doi.org/10.1016/j.ijbiomac.2023.126557.
CHEN E H, HOU Q L. Identification and expression analysis of cuticular protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)[J]. Pesticide biochemistry and physiology, 2021, 178: 104943. DOI: 10.1016/j.pestbp.2021.104943http://dx.doi.org/10.1016/j.pestbp.2021.104943.
ZHAO S, JIANG D, WANG F, et al. Independent and Synergistic Effects of Knocking out Two ABC Transporter Genes on Resistance to Bacillus thuringiensis Toxins Cry1Ac and Cry1Fa in Diamondback Moth[J]. Toxins, 2020, 13(1): 9. DOI: 10.3390/toxins13010009http://dx.doi.org/10.3390/toxins13010009.
HUANG P, YU H, ASAD M, et al. Functional characteristics of Dicer genes in Plutella xylostella[J]. Pest management science, 2024, 80(4): 2109-2119. DOI: 10.1002/ps.7945http://dx.doi.org/10.1002/ps.7945.
XU X, HARVEY-SAMUEL T, SIDDIQUI H A, et al. Toward a CRISPR-Cas9-Based Gene Drive in the Diamondback Moth Plutella xylostella[J]. The CRISPR journal, 2022, 5(2): 224-236. DOI: 10.1089/crispr.2021.0129http://dx.doi.org/10.1089/crispr.2021.0129.
YOU L, BI H L, WANG Y H, et al. CRISPR/Cas9-based mutation reveals Argonaute 1 is essential for pigmentation in Ostrinia furnacalis[J]. Insect science, 2019, 26(6): 1020-1028. DOI: 10.1111/1744-7917.12628http://dx.doi.org/10.1111/1744-7917.12628.
ZHU L, MON H, XU J, et al. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells[J]. Scientific reports, 2015, 5: 18103. DOI: 10.1038/srep18103http://dx.doi.org/10.1038/srep18103.
MA S, CHANG J, WANG X, et al. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori[J]. Scientific reports, 2014, 4(1):1-6. DOI: 10.1038/srep04489http://dx.doi.org/10.1038/srep04489.
LING L, GE X, LI Z, et al. MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori[J]. RNA biology, 2015, 12(7): 4: 4489. DOI: 10.1038/srep04489http://dx.doi.org/10.1038/srep04489.
ZHANG Z, ASLAM A F, LIU X, et al. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system[J]. Journal of insect physiology, 2015, 79: 73-79. DOI: 10.1016/j.jinsphys.2015.06.004http://dx.doi.org/10.1016/j.jinsphys.2015.06.004.
UCHIBORI-ASANO M, KAYUKAWA T, SEZUTSU H, et al. Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori[J]. Insect biochemistry and molecular biology, 2017, 87: 14-25. DOI: 10.1016/j.ibmb.2017.06.007http://dx.doi.org/10.1016/j.ibmb.2017.06.007.
ZHANG Z, LIU X, SHIOTSUKI T, et al. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori[J]. Insect biochemistry and molecular biology, 2017, 81: 72-79. DOI: 10.1016/j.ibmb.2017.01.001http://dx.doi.org/10.1016/j.ibmb.2017.01.001.
LIU Z L, XU J, LING L, et al. CRISPR disruption of TCTP gene impaired normal development in the silkworm Bombyx mori[J]. Insect science, 2019, 26(6): 973-982. DOI: 10.1111/1744-7917.12567http://dx.doi.org/10.1111/1744-7917.12567.
XIN H H, ZHANG D P, CHEN R T, et al. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori[J]. Archives of insect biochemistry and physiology, 2015, 90(2): 59-69. DOI: 10.1002/arch.21244http://dx.doi.org/10.1002/arch.21244.
YU B, DONG S, JIANG X, et al. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori [J]. Insects, 2023, 14(12): 932. DOI: 10.3390/insects14120932http://dx.doi.org/10.3390/insects14120932.
LI X, LIU Q, LIU H, et al. Mutation of doublesex in Hyphantria cunea results in sex-specific sterility[J]. Pest management science, 2020, 76(5): 1673-1682. DOI: 10.1002/ps.5687http://dx.doi.org/10.1002/ps.5687.
LI J, HANDLER A M. CRISPR/Cas9-mediated gene editing in an exogenous transgene and an endogenous sex determination gene in the Caribbean fruit fly, Anastrepha suspensa[J]. Gene, 2019, 691: 160-166. DOI: 10.1016/j.gene.2018.12.055http://dx.doi.org/10.1016/j.gene.2018.12.055.
SUN X, WANG X, SHI K, et al. Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes[J]. Nature communications, 2024, 15(1): 106. DOI: 10.1038/s41467-023-44444-zhttp://dx.doi.org/10.1038/s41467-023-44444-z.
ZHU G H, JIAO Y, CHEREDDY S, et al. Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43): 21501-21507. DOI: 10.1073/pnas.1905729116http://dx.doi.org/10.1073/pnas.1905729116.
LING L, RAIKHEL A S. Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): e9822-e9831. DOI: 10.1073/pnas.1808243115http://dx.doi.org/10.1073/pnas.1808243115.
TODA H, WILLIAMS J A, GULLEDGE M, et al. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila[J]. Science, 2019, 363(6426): 509-515. DOI: 10.1126/science.aat1650http://dx.doi.org/10.1126/science.aat1650.
GRATZ S J, CUMMINGS A M, NGUYEN J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease[J]. Genetics, 2013, 194(4): 1029-1035. DOI: 10.1534/genetics.113.152710http://dx.doi.org/10.1534/genetics.113.152710.
BROWN N C, GORDON B, MCDONOUGH-GOLDSTEIN C E, et al. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster[J]. bioRxiv: the preprint server for biology, 2023, 12. DOI: 10.7554/eLife.86409http://dx.doi.org/10.7554/eLife.86409.
PHAM T C P, DOLLET L, ALI M S, et al. TNIK is a conserved regulator of glucose and lipid metabolism in obesity[J]. Science advances, 2023, 9(32): eadf7119. DOI: 10.1126/sciadv.adf7119http://dx.doi.org/10.1126/sciadv.adf7119.
ZHANG Y C, GAO Y, YE W N, et al. CRISPR/Cas9-mediated knockout of NlCYP6CS1 gene reveals its role in detoxification of insecticides in Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Pest management science, 2023, 79(6): 2239-2246. DOI: 10.1002/ps.7404http://dx.doi.org/10.1002/ps.7404.
STOYKO D, O T, HERNANDEZ A, et al. CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools[J]. Current protocols, 2022, 2(12): e624. DOI: 10.1002/cpz1.624http://dx.doi.org/10.1002/cpz1.624.
RUSSI M, MARTIN E, D’AUTRéAUX B, et al. A Drosophila model of Friedreich ataxia with CRISPR/Cas9 insertion of GAA repeats in the frataxin gene reveals in vivo protection by N-acetyl cysteine[J]. Human molecular genetics, 2020, 29(17): 2831-2844. DOI: 10.1093/hmg/ddaa170http://dx.doi.org/10.1093/hmg/ddaa170.
LI H H, LI J C, SU M P, et al. Generating mutant Aedes aegypti mosquitoes using the CRISPR/Cas9 system[J]. STAR protocols, 2021, 2(2): 100432. DOI: 10.1016/j.xpro.2021.100432http://dx.doi.org/10.1016/j.xpro.2021.100432.
SUN L, ALARIQI M, WANG Y, et al. Construction of Host Plant Insect-Resistance Mutant Library by High-Throughput CRISPR/Cas9 System and Identification of A Broad-Spectrum Insect Resistance Gene[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2024, 11(4): e2306157. DOI: 10.1002/advs.202306157http://dx.doi.org/10.1002/advs.202306157.
YUSA K. piggyBac Transposon[J]. Microbiology spectrum, 2015, 3(2): Mdna3-0028-2014. DOI: 10.1128/microbiolspec.MDNA3-0028-2014http://dx.doi.org/10.1128/microbiolspec.MDNA3-0028-2014.
KIM H, KIM M, IM S K, et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes[J]. Laboratory animal research, 2018, 34(4): 147-159. DOI: 10.5625/lar.2018.34.4.147http://dx.doi.org/10.5625/lar.2018.34.4.147.
LEUNG R K, CHENG Q X, WU Z L, et al. CRISPR-Cas12-based nucleic acids detection systems[J]. Methods (San Diego, Calif), 2022, 203: 276-281. DOI: 10.1016/j.ymeth.2021.02.018http://dx.doi.org/10.1016/j.ymeth.2021.02.018.
YANG C, GE J, FU X, et al. Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis[J]. International journal of molecular sciences, 2021, 22(10): 5080. DOI: 10.3390/ijms22105080http://dx.doi.org/10.3390/ijms22105080.
BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature biotechnology, 2016, 34(9): 933-941. DOI: 10.1038/nbt.3659http://dx.doi.org/10.1038/nbt.3659.
ZHANG D, LI Y, SUN Q, et al. Establishment of a medium-scale mosquito facility: tests on mass production cages for Aedes albopictus (Diptera: Culicidae)[J]. Parasites & vectors, 2018, 11(1): 189. DOI: 10.1186/s13071-018-2750-7http://dx.doi.org/10.1186/s13071-018-2750-7.
AMIN S A S, SOBHI N. Process optimization in poultry feed mill [J]. Scientific reports, 2023, 13(1): 9897. DOI: 10.1038/s41598-023-36072-whttp://dx.doi.org/10.1038/s41598-023-36072-w.
SHAW W R, CATTERUCCIA F. Vector biology meets disease control: using basic research to fight vector-borne diseases[J]. Nature microbiology, 2019, 4(1): 20-34. DOI: 10.1038/s41564-018-0214-7http://dx.doi.org/10.1038/s41564-018-0214-7.
CHOWANSKI S, ADAMSKI Z, LUBAWY J, et al. Insect Peptides - Perspectives in Human Diseases Treatment[J]. Current medicinal chemistry, 2017, 24(29): 3116-3152. DOI: 10.2174/0929867324666 170526120218http://dx.doi.org/10.2174/0929867324666170526120218.
ANNAS G J, BEISEL C L, CLEMENT K, et al. A Code of Ethics for Gene Drive Research[J]. The CRISPR journal, 2021, 4(1): 19-24. DOI: 10.1089/crispr.2020.0096http://dx.doi.org/10.1089/crispr.2020.0096.
BURGESS M M, MUMFORD J D, LAVERY J V. Public engagement pathways for emerging GM insect technologies[J]. BMC proceedings, 2018, 12(8): 12. DOI: 10.1186/s12919-018-0109-xhttp://dx.doi.org/10.1186/s12919-018-0109-x.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构