浏览全部资源
扫码关注微信
1.香港科技大学海洋科学系,香港 999077
2.山西大学合成生物学学院,山西 太原 030006
[ "曾庆璐,博士,现为香港科技大学海洋科学系副教授,博士生导师。主要研究蓝细菌和噬菌体在海洋生态系统中的相互作用、噬菌体的昼夜侵染节律以及侵染过程对海洋碳磷循环的影响。2003年于中山大学获得理学学士学位,2008年于美国纽约州立大学奥尔巴尼分校(SUNY at Albany)获得生物学博士学位,2008—2012年在美国麻省理工学院开展博士后研究工作。已发表SCI论文50多篇,其中多篇发表在Nature Plants,Nature Communications,Trends in Microbiology,PNAS,Current Biology,ISME J, mBio等期刊。曾教授作为项目负责人承担1项中国自然科学基金委重大研究计划项目和2项中国自然科学基金委面上项目,作为骨干成员参与中国科技部973重大科学研究计划项目课题。曾教授还作为项目负责人承担5项香港研究资助局常规项目和1项重点项目,还于2013年获得大学教育资助委员会的杰出青年学者奖。Email:zeng@ust.hk" ]
[ "郝庭彬,男,博士,讲师。2020年毕业于暨南大学海洋生物与生物技术专业,获理学博士学位。已承担国家自然科学青年基金项目1项,中国博士后基金项目1项,参与国家自然科学基金项目2项,在国内外学术期刊发表学术论文5篇。Email: htb1221@sxu.edu.cn" ]
纸质出版日期:2024-03-15,
收稿日期:2023-01-19,
修回日期:2023-02-20,
扫 描 看 全 文
曾庆璐,郝庭彬.微藻合成生物学应用及前景[J].新兴科学和技术趋势,2024,3(1):52-61.
ZENG Qinglu,HAO Tingbin.Application and prospect of microalgal synthetic biology[J].Emerging Science and Technology,2024,3(1):52-61.
曾庆璐,郝庭彬.微藻合成生物学应用及前景[J].新兴科学和技术趋势,2024,3(1):52-61. DOI: 10.12405/j.issn.2097-1486.2024.01.006.
ZENG Qinglu,HAO Tingbin.Application and prospect of microalgal synthetic biology[J].Emerging Science and Technology,2024,3(1):52-61. DOI: 10.12405/j.issn.2097-1486.2024.01.006.
微藻是一类水生光合自养微生物的统称,其高效的光合固碳效率对维持全球生态系统稳定具有重要意义。20世纪开始,人们致力于探索微藻高效固碳机制和细胞内多种生物活性物质功能。微藻天然的高效固碳能力、丰富的色素种类及高脂质含量,使其在光合固碳、高值色素和生物燃料领域具有其独特的优势。传统上,人们往往通过分离筛选高效藻株来实现产量及效率的提升,然而,微藻较低的生物量导致其优势无法与现代经济产业完美的融合。合成生物学为改造微藻进而提高其生产力开辟了新的途径。本文讨论了合成生物学在微藻于碳中和、高值色素和生物燃料领域的应用及未来的发展方向。
As a group of aquatic photosynthetic autotrophic microorganisms, microalgae play an important role in sustaining the earth's ecosystems, which depends on the efficient photosynthetic carbon sequestration efficiency. Studies have been committed to exploring the efficient carbon sequestration mechanisms and the functions of various bioactive compounds of microalgae since last century. The natural high-efficiency carbon sequestration ability, the rich pigment types and the high lipid content of microalgae give them a unique advantage in photosynthetic carbon fixation, high-value pigments, and biofuels. Traditionally, excellent strains have often been isolated and screened to improve the yield of production and efficiency of carbon fixation. However, the low biomass of microalgae prevents its advantages from perfectly integrating with economic industries. Synthetic biology provides a new avenue for modifying and optimizing microalgae. This review displays the applications and future directions of synthetic biology in carbon neutrality, high-value pigments and biofuels of microalgae.
微藻合成生物学碳中和高值色素生物燃料
microalgaesynthetic biologycarbon neutralityhigh-value pigmentsbiofuel
KRUSE O, RUPPRECHT J, MUSSGNUG J H, et al. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies [J]. Photochemical & Photobiological Sciences, 2005, 4(12): 957-970. DOI:10.1039/b506923hhttp://dx.doi.org/10.1039/b506923h.
ROCHAIX J D. Regulation and dynamics of the light-harvesting system [J]. Annual review of plant biology, 2014, 65: 287-309. DOI:10.1146/annurev-arplant-050213-040226http://dx.doi.org/10.1146/annurev-arplant-050213-040226.
RUBAN A V. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage [J]. Plant physiology, 2016, 170(4): 1903-1916. DOI:10.1104/pp.15.01935http://dx.doi.org/10.1104/pp.15.01935.
KUMAR V, SHARMA N, JAISWAL K K, et al. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges [J]. Process Biochemistry, 2021, 104: 83-91. DOI:10.1016/j.procbio.2021.03.006http://dx.doi.org/10.1016/j.procbio.2021.03.006.
CAZZANIGA S, DALL’OSTO L, SZAUB J, et al. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor [J]. Biotechnology for biofuels, 2014, 7(1): 1-13. DOI:10.1186/s13068-014-0157-zhttp://dx.doi.org/10.1186/s13068-014-0157-z.
HAYAKAWA J, SATO E, TAKAGI S, et al. A truncated antenna mutant of the unicellular green alga Coccomyxa sp. strain Obi shows better biomass productivity than the wild-type strain under higher irradiance, at higher cell density, and in greater depth of culture [J]. Algal Research, 2023, 74: 103216. DOI:10.1016/j.algal.2023.103216http://dx.doi.org/10.1016/j.algal.2023.103216.
MUSSGNUG J H, THOMAS‐HALL S, RUPPRECHT J, et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion [J]. Plant biotechnology journal, 2007, 5(6): 802-814. DOI:10.1111/j.1467-7652.2007.00285.xhttp://dx.doi.org/10.1111/j.1467-7652.2007.00285.x.
FU W, CHAIBOONCHOE A, KHRAIWESH B, et al. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency [J]. Science advances, 2017, 3(9): e1603096. DOI:10.1126/sciadv.1603096http://dx.doi.org/10.1126/sciadv.1603096.
CARMO SILVA E, SCALES J C, MADGWICK P J, et al. Optimizing R ubisco and its regulation for greater resource use efficiency [J]. Plant, cell & environment, 2015, 38(9): 1817-1832. DOI:10.1111/pce.12425http://dx.doi.org/10.1111/pce.12425.
WEI L, WANG Q, XIN Y, et al. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase [J]. Algal research, 2017, 27: 366-375. DOI:10.1016/j.algal.2017.07.023http://dx.doi.org/10.1016/j.algal.2017.07.023.
YANG B, LIU J, MA X, et al. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae [J]. Biotechnology for biofuels, 2017, 10(1): 1-13. DOI:10.1186/s13068-017-0916-8http://dx.doi.org/10.1186/s13068-017-0916-8.
FANG L, LIN H X, LOW C S, et al. Expression of the Chlamydomonas reinhardtii Sedoheptulose‐1, 7‐bisphosphatase in Dunaliella bardawil leads to enhanced photosynthesis and increased glycerol production [J]. Plant biotechnology journal, 2012, 10(9): 1129-1135. DOI:10.1111/pbi.12000http://dx.doi.org/10.1111/pbi.12000.
OGAWA T, TAMOI M, KIMURA A, et al. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphosphatase leads to increases in biomass and wax ester production [J]. Biotechnology for biofuels, 2015, 8(1): 1-11. DOI:10.1186/s13068-015-0264-5http://dx.doi.org/10.1186/s13068-015-0264-5.
DURALL C, LINDBLAD P. Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria [J]. Algal Research, 2015, 11: 263-270. DOI:10.1016/j.algal.2015.07.002http://dx.doi.org/10.1016/j.algal.2015.07.002.
LIU L N. Advances in the bacterial organelles for CO2 fixation [J]. Trends in Microbiology, 2022, 30(6): 567-580. DOI:10.1016/j.tim.2021.10.004http://dx.doi.org/10.1016/j.tim.2021.10.004.
WANG Y, STESSMAN D J, SPALDING M H. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient [J]. The Plant Journal, 2015, 82(3): 429-448. DOI:10.1111/tpj.12829http://dx.doi.org/10.1111/tpj.12829.
BURLACOT A, PELTIER G. Energy crosstalk between photosynthesis and the algal CO2-concentrating mechanisms [J]. Trends in Plant Science, 2023, 28(7): 795-807. DOI:10.1016/j.tplants.2023.03.018http://dx.doi.org/10.1016/j.tplants.2023.03.018.
FANG W, SI Y, DOUGLASS S, et al. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1 [J]. The Plant Cell, 2012, 24(5): 1876-1893. DOI:10.1105/tpc.112.097949http://dx.doi.org/10.1105/tpc.112.097949.
WANG Y, SUN Z, HORKEN K M, et al. Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its control of gene expression [J]. Canadian Journal of Botany, 2005, 83(7): 765-779. DOI:10.1139/b05-062http://dx.doi.org/10.1139/b05-062.
YUN E J, ZHANG G-C, ATKINSON C, et al. Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism [J]. Journal of Biotechnology, 2021, 335: 39-46. DOI:10.1016/j.jbiotec.2021.06.009http://dx.doi.org/10.1016/j.jbiotec.2021.06.009.
DUANMU D, MILLER A R, HORKEN K M, et al. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii [J]. Proceedings of the National Academy of Sciences, 2009, 106(14): 5990-5995. DOI:10.1073/pnas.0812885106http://dx.doi.org/10.1073/pnas.0812885106.
KONO A, SPALDING M H. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO2 uptake under low CO2 [J]. The Plant Journal, 2020, 102(6): 1127-1141. DOI:10.1111/tpj.14761http://dx.doi.org/10.1111/tpj.14761.
MIURA K. Expression profiling-based identification of CO2-responsive genes regulated by ccm1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii [J]. Plant Physiology, 2004, 135(3): 1595-1607. DOI:10.1104/pp.104.041400http://dx.doi.org/10.1104/pp.104.041400.
VIKRAMATHITHAN J, HWANGBO K, LIM J M, et al. Overexpression of Chlamydomonas reinhardtii LCIA (CrLCIA) gene increases growth of Nannochloropsis salina CCMP1776 [J]. Algal Research, 2020, 46: 101807. DOI:10.1016/j.algal.2020.101807http://dx.doi.org/10.1016/j.algal.2020.101807.
CHEN T, HOJKA M, DAVEY P, et al. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis [J]. Nature Communications, 2023, 14(1): 2118. DOI:10.1038/s41467-023-37490-0http://dx.doi.org/10.1038/s41467-023-37490-0.
HLAVOV M, TUR CZY Z, BIOV K I. Improving microalgae for biotechnology — From genetics to synthetic biology [J]. Biotechnology Advances, 2015, 33(6): 1194-1203. DOI:10.1016/j.biotechadv.2015.01.009http://dx.doi.org/10.1016/j.biotechadv.2015.01.009.
SRIVASTAVA A, KALWANI M, CHAKDAR H, et al. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review [J]. Bioresource Technology, 2022, 352: 127071. DOI:10.1016/j.biortech.2022.127071http://dx.doi.org/10.1016/j.biortech.2022.127071.
CAO K, CUI Y, SUN F, et al. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in microalgae [J]. Biotechnology Advances, 2023, 68: 108236. DOI:10.1016/j.biotechadv.2023.108236http://dx.doi.org/10.1016/j.biotechadv.2023.108236.
ASWINI V, GOTHANDAM K. Genetic manipulation for carotenoid production in microalgae an overview [J]. Current Research in Biotechnology, 2022, 4: 221-228. DOI:10.1016/j.crbiot.2022.03.005http://dx.doi.org/10.1016/j.crbiot.2022.03.005.
LAUERSEN K J, WICHMANN J, BAIER T, et al. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii [J]. Metabolic Engineering, 2018, 49: 116-127. DOI:10.1016/j.ymben.2018.07.005http://dx.doi.org/10.1016/j.ymben.2018.07.005.
MIKAMI, KOJI, HOSOKAWA, et al. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds [J]. 2013, 14(7): 13763-13781. DOI:10.3390/ijms140713763http://dx.doi.org/10.3390/ijms140713763
EILERS U, BIKOULIS A, BREITENBACH J, et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum [J]. Journal of Applied Phycology, 2016, 28(1): 123-129. DOI:10.1007/s10811-015-0583-8http://dx.doi.org/10.1007/s10811-015-0583-8.
CORDERO B F, COUSO I, LE N R, et al. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis [J]. Applied Microbiology and Biotechnology, 2011, 91(2): 341-351. DOI:10.1007/s00253-011-3262-yhttp://dx.doi.org/10.1007/s00253-011-3262-y.
SALVINI M, BERNINI A, FAMBRINI M, et al. cDNA cloning and expression of the phytoene synthase gene in sunflower [J]. Journal of Plant Physiology, 2005, 162(4): 479-484. DOI:10.1016/j.jplph.2004.04.011http://dx.doi.org/10.1016/j.jplph.2004.04.011.
DING W, SHANG M M, ZHAO P, et al. Butyl hydroxyanisole induced astaxanthin accumulation in Haematococcus pluvialis LUGU [J]. Science and Technology of Food Industry, 2016, 37(19): 162-166. DOI:10.13386/j.issn1002-0306.2026.19.023http://dx.doi.org/10.13386/j.issn1002-0306.2026.19.023.
HAO T B, LU Y, ZHANG Z H, et al. Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum [J]. Applied Microbiology and Biotechnology, 2021, 105(23): 8783-8793. DOI:10.1007/s00253-021-11660-whttp://dx.doi.org/10.1007/s00253-021-11660-w.
GAO X, XU H, ZHU Z, et al. Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme [J]. Microbiological Research, 2020, 236: 126455. DOI:10.1016/j.micres.2020.126455http://dx.doi.org/10.1016/j.micres.2020.126455.
TOKUNAGA S, MORIMOTO D, KOYAMA T, et al. Enhanced lutein production in Chlamydomonas reinhardtii by overexpression of the lycopene epsilon cyclase gene [J]. Applied Biochemistry and Biotechnology, 2021, 193(6): 1967-1978. DOI:10.1007/s12010-021-03524-whttp://dx.doi.org/10.1007/s12010-021-03524-w.
BERG T E V D, CROCE R. The Loroxanthin Cycle: A new type of xanthophyll cycle in green algae (Chlorophyta) [J]. Frontiers in Plant Science, 2021, 13: 797294. DOI:10.3389/fpls.2022.797294http://dx.doi.org/10.3389/fpls.2022.797294.
HUANG K, SU Z, HE M, et al. Simultaneous accumulation of astaxanthin and β-carotene in Chlamydomonas reinhardtii by the introduction of foreign β-carotene hydroxylase gene in response to high light stress [J]. Biotechnology Letters, 2022, 44(2): 321-331. DOI:10.1007/s10529-022-03230-5http://dx.doi.org/10.1007/s10529-022-03230-5.
CAMAGNA M, GRUNDMANN A, BR C, et al. Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis [J]. American Society of Plant Biologists, 2019, 179(3): 1013-1027. DOI:10.1104/pp.18.01026http://dx.doi.org/10.1104/pp.18.01026
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use [J]. Planta, 2019, 249: 1-8. DOI:10.1007/s00425-018-3056-xhttp://dx.doi.org/10.1007/s00425-018-3056-x.
PEROZENI F, CAZZANIGA S, BAIER T, et al. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii [J]. Plant biotechnology journal, 2020, 18(10): 2053-2067. DOI:10.1111/pbi.13364http://dx.doi.org/10.1111/pbi.13364.
ANILA N, SIMON D P, CHANDRASHEKAR A, et al. Metabolic engineering of Dunaliella salina for production of ketocarotenoids [J]. Photosynthesis research, 2016, 127(3): 321-333. DOI:10.1007/s11120-015-0188-8http://dx.doi.org/10.1007/s11120-015-0188-8.
LIU Y, CUI Y, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin [J]. Algal Research, 2019, 44: 101679. DOI:10.1007/s11120-015-0188-8http://dx.doi.org/10.1007/s11120-015-0188-8.
MENIN, LAMI, MUSAZZI, et al. A comparison of constitutive and inducible non-endogenous keto-carotenoids biosynthesis in Synechocystis sp. PCC 6803 [J]. Microorganisms, 2019, 7(11): 501. DOI:10.3390/microorganisms7110501http://dx.doi.org/10.3390/microorganisms7110501.
Dragone G, Fernandes B, Vicente A A, et al. Third generation biofuels from microalgae[J]. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2010, 2: 1355-1366.
SINGH A, KUMAR M, CHAKDAR H, et al. Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion [J]. Frontiers in Microbiology, 2022, 13: 1033158. DOI:10.3389/fmicb.2022.1033158http://dx.doi.org/10.3389/fmicb.2022.1033158.
COOLEY J W, VERMAAS W F J. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. Strain PCC 6803: Capacity Comparisons and Physiological Function [J]. Journal of Bacteriology, 2001, 183(14): 4251-4258. DOI:10.1128/jb.183.14.4251-4258.2001http://dx.doi.org/10.1128/jb.183.14.4251-4258.2001.
WANG F, GAO Y, YANG G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production [J]. Bioengineered, 2020, 11(1): 1208-1220. DOI:10.1080/21655979.2020.1837458http://dx.doi.org/10.1080/21655979.2020.1837458.
SHAKEEL T, FATMA Z, FATMA T, et al. Heterogeneity of alkane chain length in freshwater and marine cyanobacteria [J]. Frontiers in bioengineering and biotechnology, 2015, 3: 34. DOI:10.3389/fbioe.2015.00034http://dx.doi.org/10.3389/fbioe.2015.00034.
CHISTI Y. Biodiesel from microalgae [J]. Biotechnology Advances: An International Review Journal, 2007, 25(3): 294-306. DOI:10.1016/j.biotechadv.2007.02.001http://dx.doi.org/10.1016/j.biotechadv.2007.02.001.
FUKUDA S, HIRASAWA E, TAKEMURA T, et al. Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae [J]. Scientific reports, 2018, 8(1): 12410. DOI:10.1038/s41598-018-30809-8http://dx.doi.org/10.1038/s41598-018-30809-8
DABOUSSI F, LEDUC S, MAR CHAL A, et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology [J]. Nature communications, 2014, 5(1): 3831. DOI:10.1038/ncomms4831http://dx.doi.org/10.1038/ncomms4831.
CHUNGJATUPORNCHAI W, AREERAT K, FA-AROONSAWAT S. Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase [J]. Microbial Cell Factories, 2019, 18(1): 53. DOI:10.1186/s12934-019-1104-2http://dx.doi.org/10.1186/s12934-019-1104-2.
HASLAM R P, HAMILTON M L, ECONOMOU C K, et al. Overexpression of an endogenous type 2 diacylglycerol acyltransferase in the marine diatom Phaeodactylum tricornutum enhances lipid production and omega-3 long-chain polyunsaturated fatty acid content [J]. Biotechnology for Biofuels, 2020, 13(1): 87. DOI: 10.1186/s13068-020-01726-8http://dx.doi.org/10.1186/s13068-020-01726-8.
WANG X, LIU S F, LI R Y, et al. TAG pathway engineering via GPAT2 concurrently potentiates abiotic stress tolerance and oleaginicity in Phaeodactylum tricornutum [J]. BioMed Central, 2020, 13(1): 160. DOI:10.1186/s13068-020-01799-5http://dx.doi.org/10.1186/s13068-020-01799-5.
SHANG H N, LIU S S, XU C H, et al. Overexpression of genes involved in fatty acid biosynthesis increases lipid content in the NaHCO3-tolerant Chlorella sp. JB6 [J]. Microbiology Spectrum, 2024, 12(1): e0318423. DOI:10.1128/spectrum.03184-23http://dx.doi.org/10.1128/spectrum.03184-23.
RENGEL R, SMITH R T, HASLAM R P, et al. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii [J]. Algal Research, 2018, 31: 183-193. DOI:10.1016/j.algal.2018.02.009http://dx.doi.org/10.1016/j.algal.2018.02.009.
CHEN D, YUAN X, LIANG L, et al. Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii [J]. Biotechnology Letters, 2019, 41(10): 1133-1145. DOI:10.1007/s10529-019-02715-0http://dx.doi.org/10.1007/s10529-019-02715-0.
AJJAWI I, VERRUTO J, AQUI M, et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator [J]. Nature Biotechnology, 2017, 35(7): 647-652. DOI:10.1038/nbt.3865http://dx.doi.org/10.1038/nbt.3865.
TAKAHASHI S, OKUBO R, KANESAKI Y, et al. Identification of transcription factors and the regulatory genes involved in triacylglycerol accumulation in the unicellular red alga Cyanidioschyzon merolae [J]. Plants, 2021, 10(5): 971. DOI:10.3390/plants10050971http://dx.doi.org/10.3390/plants10050971.
CHRISTIAN.S DFELD, MICHAL.HUB EK, FIGUEIREDO D,et al. High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica [J]. Metabolic engineering, 2021, 66: 239-258. DOI:10.1016/j.ymben.2021.04.012http://dx.doi.org/10.1016/j.ymben.2021.04.012.
LI D W, BALAMURUGAN S, YANG Y F, et al. Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion [J]. Science advances, 2019, 5(1): eaau3795. DOI:10.1126/sciadv.aau3795http://dx.doi.org/10.1126/sciadv.aau3795.
ZHAO J, GE Y, LIU K, et al. Overexpression of a MYB1 transcription factor enhances triacylglycerol and starch accumulation and biomass production in the green microalga Chlamydomonas reinhardtii [J]. Journal of Agricultural and Food Chemistry, 2023, 71(46): 17833-17841. DOI:10.1021/acs.jafc.3c05290http://dx.doi.org/10.1021/acs.jafc.3c05290.
BAI F, ZHANG Y, LIU J. A bZIP transcription factor is involved in regulating lipid and pigment metabolisms in the green alga Chlamydomonas reinhardtii [J]. Algal Research, 2021, 59: 102450. DOI:10.1016/j.algal.2021.102450http://dx.doi.org/10.1016/j.algal.2021.102450.
RATLEDGE C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems [J]. Biotechnology letters, 2014, 36(8): 1557-1568. DOI:10.1007/s10529-014-1532-3http://dx.doi.org/10.1007/s10529-014-1532-3.
XU M, DING L, LIANG J, et al. NAD kinase sustains lipogenesis and mitochondrial metabolismthrough fatty acid synthesis [J]. Cell Reports, 2021, 37(13): 110157. DOI:10.1016/j.celrep.2021.110157http://dx.doi.org/10.1016/j.celrep.2021.110157.
XUE J, BALAMURUGAN S, LI D W, et al. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply [J]. Metabolic Engineering, 2017, 41: 212-221. DOI:10.1016/j.ymben.2017.04.008http://dx.doi.org/10.1016/j.ymben.2017.04.008.
XUE J, CHEN T T, ZHENG J W, et al. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway [J]. Applied Microbiology & Biotechnology, 2018, 102(24): 10803-10815. DOI:10.1007/s00253-018-9415-5http://dx.doi.org/10.1007/s00253-018-9415-5.
ZHOU J, ZHANG F, MENG H, et al. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria [J]. Metabolic Engineering, 2016, 38: 217-227. DOI:10.1016/j.ymben.2016.08.002http://dx.doi.org/10.1016/j.ymben.2016.08.002.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构