浏览全部资源
扫码关注微信
1.华东师范大学 生命科学学院 上海市调控生物学重点实验室,上海 200241
2.山西医科大学 医学技术研究院,山西 太原 030006
[ "叶海峰,研究员,国家重点研发计划首席科学家、国家高层次科技领军人才入选者,国家优青获得者,华东师范大学生命科学学院、上海市调控生物学重点实验室研究员,博士生导师,担任华东师范大学医学合成生物学研究中心执行主任。2007—2013年在瑞士苏黎世联邦理工学院(ETH Zurich)从事博士和博士后研究工作。于2014年回到母校华东师范大学受聘为“紫江优秀青年学者”,2015年入选中央组织部第十一批“青年千人计划”,2015年获得国家自然科学基金委优青资助。主要从事合成生物学与生物医学工程领域的研究。主要研究内容包括:人工基因电路和定制细胞的设计与合成、光遗传学、精准可控基因编辑体系、代谢疾病智能诊疗、肿瘤免疫智能诊疗、合成生物学与再生医学、微生物合成生物学与疾病智能诊疗等。叶海峰博士回国工作以来带领自己的研究团队以通讯作者身份在 Science、Science Translational Medicine(2篇封面文章)、Science Advances(3篇)、Nature Biotechnology、Nature Biomedical Engineering、Nature Chemical Biology、Nature Communications(4篇)、Proc Natl Acad Sci USA(3篇)、Molecular Therapy (2篇)等高影响力杂志发表重要研究成果。Email: hfye@bio.ecnu.edu.cn" ]
纸质出版日期:2024-03-15,
收稿日期:2024-01-11,
修回日期:2024-02-20,
扫 描 看 全 文
武鑫,叶海峰.合成生物学在AAV基因治疗中的应用[J].新兴科学和技术趋势,2024,3(1):25-38.
WU Xin,YE Haifeng.Application of synthetic biology in AAV gene therapy[J].Emerging Science and Technology,2024,3(1):25-38.
武鑫,叶海峰.合成生物学在AAV基因治疗中的应用[J].新兴科学和技术趋势,2024,3(1):25-38. DOI: 10.12405/j.issn.2097-1486.2024.01.004.
WU Xin,YE Haifeng.Application of synthetic biology in AAV gene therapy[J].Emerging Science and Technology,2024,3(1):25-38. DOI: 10.12405/j.issn.2097-1486.2024.01.004.
基因治疗在精准医学中崭露头角,对医疗和诊断产生深远影响。腺相关病毒(AAV)基因载体成为基因治疗中领先的基因传递工具,其作为安全、免疫原性低、血清型多样、具有组织特异性的临床基因治疗载体,在体内具有长期效果。然而,AAV递送的基因过量表达可能引起毒性或副作用。因此,新一代合成生物学工程化的AAV载体正在崛起,合成生物学能够在细胞转导和基因表达的不同阶段对载体功能进行控制,精准调控目的基因表达。本文将围绕基因环路的设计思路和方法,AAV基因治疗的研究进展以及合成生物学在AAV基因治疗方面的研究进展进行介绍。最后对合成生物学驱动的AAV基因治疗走向临床治疗的应用前景和挑战进行展望。合成生物学驱动的AAV基因治疗在提供精准和个性化治疗方案方面展现出巨大潜力,有望扩大治疗范围并降低成本,但同时面临免疫应答、靶向性、生产成本及伦理监管等关键挑战。
The emergence of gene therapy in precision medicine has made a profound impact on healthcare and diagnostics. As leading gene delivery tools in gene therapy, adeno-associated virus (AAV) gene vectors are clinically approved carriers, ensuring safety, low immunogenicity, diverse serotypes, tissue specificity, and long-term effectiveness in vivo. However, gene over-expression delivered by AAV may lead to toxicity or side effects. Consequently, new AAV vectors engineered through synthetic biology are on the rise. Synthetic biology can control the function of carriers at different stages of cellular transduction and gene expression, thus precisely controlling target gene expression. This article focuses on the design principles and methods of gene circuits, advancements in AAV gene therapy research, and progress in synthetic biology within the context of AAV gene therapy. It provides insights into the prospective clinical applications and the challenges of AAV gene therapy driven by synthetic biology. Synthetic biology-driven AAV gene therapy has exhibited substantial potential in providing precise and personalized treatment solutions, with the promise of expanding the therapeutic scope and reducing costs. However, it also faces key challenges, including immune responses, targeting specificity, production costs, and stringent ethical and regulatory considerations.
合成生物学腺相关病毒AAV基因治疗基因环路
synthetic biologyadeno-associated virusgene therapygene circuits
ZHANG X E, LIU C, DAI J, et al. Enabling technology and core theory of synthetic biology [J]. Sci China Life Sci, 2023, 66(8): 1742-1785. DOI:10.1007/s11427-022-2214-2http://dx.doi.org/10.1007/s11427-022-2214-2.
MCNERNEY M P, DOIRON K E, NG T L, et al. Theranostic cells: emerging clinical applications of synthetic biology [J]. Nat Rev Genet, 2021, 22(11): 730-746. DOI:10.1038/s41576-021-00383-3http://dx.doi.org/10.1038/s41576-021-00383-3.
SEDLMAYER F, AUBEL D, FUSSENEGGER M. Synthetic gene circuits for the detection, elimination and prevention of disease [J]. Nat Biomed Eng, 2018, 2(6): 399-415. DOI:10.1038/s41551-018-0215-0http://dx.doi.org/10.1038/s41551-018-0215-0.
MANSOURI M, FUSSENEGGER M. Therapeutic cell engineering: designing programmable synthetic genetic circuits in mammalian cells [J]. Protein Cell, 2022, 13(7): 476-489. DOI:10.1007/s13238-021-00876-1http://dx.doi.org/10.1007/s13238-021-00876-1.
XIE M, FUSSENEGGER M. Designing cell function: assembly of synthetic gene circuits for cell biology applications [J]. Nat Rev Mol Cell Biol, 2018, 19(8): 507-525. DOI:10.1038/s41580-018-0024-zhttp://dx.doi.org/10.1038/s41580-018-0024-z.
BULAKLAK K, GERSBACH C A. The once and future gene therapy [J]. Nat Commun, 2020, 11(1): 5820. DOI:10.1038/s41467-020-19505-2http://dx.doi.org/10.1038/s41467-020-19505-2.
WAGNER H J, WEBER W, FUSSENEGGER M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy [J]. Adv Sci (Weinh), 2021, 8(9): 2004018. DOI:10.1002/advs.202004018http://dx.doi.org/10.1002/advs.202004018.
WANG D, TAI P W L, GAO G. Adeno-associated virus vector as a platform for gene therapy delivery [J]. Nat Rev Drug Discov, 2019, 18(5): 358-378. DOI:10.1038/s41573-019-0012-9http://dx.doi.org/10.1038/s41573-019-0012-9.
DUNBAR C E, HIGH K A, JOUNG J K, et al. Gene therapy comes of age [J]. Science, 2018, 359(6372): 175. DOI:10.1126/science.aan4672http://dx.doi.org/10.1126/science.aan4672.
LI C, SAMULSKI R J. Engineering adeno-associated virus vectors for gene therapy [J]. Nat Rev Genet, 2020, 21(4): 255-272. DOI:10.1038/s41576-019-0205-4http://dx.doi.org/10.1038/s41576-019-0205-4.
CHAN Y K, WANG S K, CHU C J, et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses [J]. Sci Transl Med, 2021, 13(580): eabd3438. DOI:10.1126/scitranslmed.abd3438http://dx.doi.org/10.1126/scitranslmed.abd3438.
HORNER M, KAUFMANN B, COTUGNO G, et al. A chemical switch for controlling viral infectivity [J]. Chem Commun (Camb), 2014, 50(71): 10319-10322. DOI:10.1039/c4cc03292fhttp://dx.doi.org/10.1039/c4cc03292f.
TONG J G, EVANS A C, HO M L, et al. Reducing off target viral delivery in ovarian cancer gene therapy using a protease-activated AAV2 vector platform [J]. J Control Release, 2019, 307: 292-301. DOI:10.1016/j.jconrel.2019.06.034http://dx.doi.org/10.1016/j.jconrel.2019.06.034.
SHAO J, WANG M, YU G, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation [J]. Proc Natl Acad Sci U S A, 2018, 115(29): E6722-E6730. DOI:10.1073/pnas.1802448115http://dx.doi.org/10.1073/pnas.1802448115.
GOMEZ E J, GERHARDT K, JUDD J, et al. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery [J]. ACS Nano, 2016, 10(1): 225-237. DOI:10.1021/acsnano.5b05558http://dx.doi.org/10.1021/acsnano.5b05558.
BUSCARA L, GROSS D A, DANIELE N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back [J]. J Pers Med, 2020, 10(4): 258. DOI:10.3390/jpm10040258http://dx.doi.org/10.3390/jpm10040258.
LEE C J, FAN X, GUO X, et al. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease [J]. J Cardiol, 2011, 57(1): 115-122. DOI:10.1016/j.jjcc.2010.08.003http://dx.doi.org/10.1016/j.jjcc.2010.08.003.
YAN Z, YAN H, OU H. Human thyroxine binding globulin (TBG) promoter directs efficient and sustaining transgene expression in liver-specific pattern [J]. Gene, 2012, 506(2): 289-294. DOI:10.1016/j.gene.2012.07.009http://dx.doi.org/10.1016/j.gene.2012.07.009.
MONTEYS A M, HUNDLEY A A, RANUM P T, et al. Regulated control of gene therapies by drug-induced splicing [J]. Nature, 2021, 596(7871): 291-295. DOI:10.1038/s41586-021-03770-2http://dx.doi.org/10.1038/s41586-021-03770-2.
ZHONG G, WANG H, HE W, et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo [J]. Nat Biotechnol, 2020, 38(2): 169-175. DOI:10.1038/s41587-019-0357-yhttp://dx.doi.org/10.1038/s41587-019-0357-y.
ANGELICI B, SHEN L, SCHREIBER J, et al. An AAV gene therapy computes over multiple cellular inputs to enable precise targeting of multifocal hepatocellular carcinoma in mice [J]. Sci Transl Med, 2021, 13(624): eabh4456. DOI:10.1126/scitranslmed.abh4456http://dx.doi.org/10.1126/scitranslmed.abh4456.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构