浏览全部资源
扫码关注微信
1.上海科技大学 生命科学与技术学院,上海 201210
2.中国科学院 分子细胞科学卓越创新中心(原上海生物化学与细胞生物学研究所),多细胞体系结构与功能重点实验室,上海市分子男科学重点实验室,上海 200031
[ "李劲松,男,博士,中国科学院院士,中国科学院分子细胞科学卓越创新中心研究员,博士生导师,从事干细胞与胚胎发育相关研究。李劲松院士率领团队建立了小鼠孤雄单倍体胚胎干细胞(即“类精子干细胞”),证明其能代替精子使卵子受精产生健康小鼠(即“半克隆技术”),并利用类精子干细胞携带CRIPSR/Cas9文库实现了小鼠个体水平的遗传筛选,提出并推动基于类精子干细胞技术的基因组标签计划。相关研究成果于2011年和2012年入选“中国科学十大进展”;以第一作者或通讯作者身份在Cell、Nature、Cell Stem Cell、Nature Cell Biology等杂志发表60余篇研究论文;荣获中国科学院“百人计划”、国家杰出青年科学基金、中青年科技创新领军人才、国家百千万人才工程、中组部“万人计划”。Email: jsli@sibcb.ac.cn" ]
纸质出版日期:2024-03-15,
收稿日期:2024-02-12,
修回日期:2024-03-10,
扫 描 看 全 文
李劲松.类精子干细胞介导的遗传改造与应用[J].新兴科学和技术趋势,2024,3(1):1-8.
LI Jinsong.Sperm-like stem cell-mediated genome editing and its applications[J].Emerging Science and Technology,2024,3(1):1-8.
李劲松.类精子干细胞介导的遗传改造与应用[J].新兴科学和技术趋势,2024,3(1):1-8. DOI: 10.12405/j.issn.2097-1486.2024.01.001.
LI Jinsong.Sperm-like stem cell-mediated genome editing and its applications[J].Emerging Science and Technology,2024,3(1):1-8. DOI: 10.12405/j.issn.2097-1486.2024.01.001.
类精子干细胞是源自小鼠孤雄囊胚中的一种新型单倍体胚胎干细胞,仅含父源遗传物质,性染色体为X染色体,能在体外自我更新、增殖和诱导分化。类精子干细胞技术结合CRISPR/Cas9技术,通过卵子注射可高效稳定地获得基因型确定的半克隆小鼠。类精子干细胞介导的遗传改造具有广泛的应用前景:高效建立动物模型,快速模拟复杂疾病,挖掘新的诊断和治疗方法;实现动物模型个体水平的靶向遗传筛选;推动基因组标签计划的规模化实施。
Sperm-like stem cells are a new type of haploid embryonic stem cells derived from mouse androgenetic blastocysts. They contain only paternal genetic material, with the X chromosome as the sex chromosome, and are capable of long-term self-renewal, proliferation and induced differentiation
in vitro
. The combination of sperm-like stem cells and CRISPR/Cas9 technology enables the injection of gene-edited sperm-like stem cells into oocytes to obtain genotypically determined semi-cloned mice efficiently and stably. Sperm-like stem cell-mediated genetic modification has a wide range of application prospects including efficient establishment of animal models, rapid simulation of complex diseases, and mining new diagnostic and therapeutic methods. It also allows for targeted genetic screening at the individual level in animal models and promotes large-scale genome tagging projects.
类精子干细胞半克隆技术小鼠疾病模型CRISPR/Cas9遗传改造基因组标签计划
sperm-like stem cellsemi-cloning technologymouse disease modelCRISPR/Cas9genome editinggenome tagging project
NURK S, KOREN S, RHIE A, et al. The complete sequence of a human genome[J]. Science, 2022, 376(6588): 44-53. DOI:10.1126/science.abj6987http://dx.doi.org/10.1126/science.abj6987.
李劲松. 基因组编辑技术:后基因组时代生命科学研究的助力器[J]. 生命科学, 2015, 27(1): 1. DOI:10.13376/j.cbls/2015001http://dx.doi.org/10.13376/j.cbls/2015001.
YOSHIDA T, OZAWA Y, SUZUKI K, et al. The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa[J]. Molecular brain, 2014, 7(1): 1-11. DOI:10.1186/1756-6606-7-45http://dx.doi.org/10.1186/1756-6606-7-45.
NG S B, BIGHAM A W, BUCKINGHAM K J, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome[J]. Nature genetics, 2010, 42(9): 790-U85. DOI:10.1038/ng.646http://dx.doi.org/10.1038/ng.646.
MISTRI M, TAMHANKAR P M, SHETH F, et al. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India[J]. PloS one, 2012, 7(6): e39122. DOI:10.1371/journal.pone.0039122http://dx.doi.org/10.1371/journal.pone.0039122.
SMITHIES O. Animal models of human genetic diseases[J]. Trends in Genetics, 1993, 9(4): 112-117. DOI:10.1016/0168-9525(93)90204-Uhttp://dx.doi.org/10.1016/0168-9525(93)90204-U.
MARSH M, RONNER W. The pursuit of parenthood: reproductive technology from test-tube babies to uterus transplants[M]. Johns Hopkins University Press, 2019.
ACIKGOZ M A. Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients[J]. Industrial crops and products, 2020, 148: 112278. DOI:10.1016/j.indcrop.2020.112278http://dx.doi.org/10.1016/j.indcrop.2020.112278.
NAWY T. Single-cell sequencing[J]. Nature methods, 2014, 11(1): 18. DOI:10.1007/978-1-0716-1307-8_19http://dx.doi.org/10.1007/978-1-0716-1307-8_19.
SUOMEI L, YIFU D, JINSONG L. A New Strategy for Constructing Mouse Models of Complex Diseases: Semi-cloning Technology Based on Sperm-like Haploid Embryonic Stem Cells [J]. Laboratory Animal and Comparative Medicine, 2021, 41(5): 369.
张莎莎, 石俊松, 赵鑫, 等. 体细胞核移植技术在粤东黑猪遗传资源保护上的应用[J]. 中国畜牧杂志, 2023, 59(11): 95-100. DOI:10.19556/j.0258-7033.20220909-01http://dx.doi.org/10.19556/j.0258-7033.20220909-01.
丁一夫, 李劲松, 周琪. 哺乳动物单倍体胚胎干细胞的建立与应用[J]. 中国科学:生命科学, 2019, 49(12): 1635-1651. DOI:10.1360/SSV-2019-0170http://dx.doi.org/10.1360/SSV-2019-0170.
王皓毅, 李劲松, 李伟. 基于CRISPR-Cas9新型基因编辑技术研究 [J]. 生命科学, 2016, 28(8): 867-870. DOI:10.13376/j.cbls/2016115http://dx.doi.org/10.13376/j.cbls/2016115.
WILKIE T M, BRINSTER R L, PALMITER R D. Germline and somatic mosaicism in transgenic mice[J]. Developmental biology, 1986, 118(1): 9-18. DOI:10.1016/0012-1606(86)90068-0http://dx.doi.org/10.1016/0012-1606(86)90068-0.
YANG H, SHI L, WANG B A, et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells[J]. Cell, 2012, 149(3): 605-617. DOI:10.1016/j.cell.2012.04.002http://dx.doi.org/10.1016/j.cell.2012.04.002.
LI W, SHUAI L, WAN H F, et al. Androgenetic haploid embryonic stem cells produce live transgenic mice[J]. Nature, 2012, 490(7420): 407. DOI:10.1038/nature11435http://dx.doi.org/10.1038/nature11435.
钟翠青, 李劲松. 代替精子使用的孤雄单倍体胚胎干细胞的建立[J]. 中国细胞生物学学报, 2013, 35(4): 397-400.
ZHONG C Q, YIN Q, XIE Z F, et al. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library[J]. Cell stem cell, 2015, 17(2): 221-232. DOI:10.1016/j.stem.2015.06.005http://dx.doi.org/10.1016/j.stem.2015.06.005.
LI Q, LI Y Y, YIN Q, et al. Temporal regulation of prenatal embryonic development by paternal imprinted loci[J]. Science China Life sciences, 2020, 63: 1-17. DOI:10.1007/s11427-019-9817-6http://dx.doi.org/10.1007/s11427-019-9817-6.
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. DOI:10.1126/science.1225829http://dx.doi.org/10.1126/science.1225829.
LU L, BAI M Z, ZHENG Y F, et al. The interaction of endorepellin and neurexin triggers neuroepithelial autophagy and maintains neural tube development [J]. Science Bulletin, 2024, 69(14): 2260-2272. DOI:10.1016/j.scib.2024.03.026http://dx.doi.org/10.1016/j.scib.2024.03.026.
VISOOTSAK J, GRAHAM J M. Klinefelter syndrome and other sex chromosomal aneuploidies[J]. Orphanet journal of rare diseases, 2006, 1(1): 1-5. DOI:10.1186/1750-1172-1-42http://dx.doi.org/10.1186/1750-1172-1-42.
SANDBACKA M, LAIVUORI H, FREITAS É, et al. TBX6, LHX1 and copy number variations in the complex genetics of Müllerian aplasia[J]. Orphanet journal of rare diseases, 2013, 8(1): 1-13. DOI:10.1186/1750-1172-8-125http://dx.doi.org/10.1186/1750-1172-8-125.
WANG L B, ZHANG Y, FU X Y, et al. Joint utilization of genetic analysis and semi-cloning technology reveals a digenic etiology of Müllerian anomalies[J]. Cell research, 2020, 30(1): 91-94. DOI:10.1038/s41422-019-0243-7http://dx.doi.org/10.1038/s41422-019-0243-7.
MAHADEVAN M, TSILFIDIS C, SABOURIN L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene[J]. Science, 1992, 255(5049): 1253-1255. DOI:10.1126/science.1546325http://dx.doi.org/10.1126/science.1546325.
KLESERT T R, CHO D H, CLARK J I, et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy[J]. Nature genetics, 2000, 25(1): 105-109. DOI:10.1038/75490http://dx.doi.org/10.1038/75490.
MANKODI A, LOGIGIAN E, CALLAHAN L, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat[J]. Science, 2000, 289(5485): 1769-1772. DOI:10.1126/science.289.5485.1769http://dx.doi.org/10.1126/science.289.5485.1769.
YIN Q, WANG H Y, LI N, et al. Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1[J]. Cell research, 2020, 30(2): 133-145. DOI:10.1038/s41422-019-0264-2http://dx.doi.org/10.1038/s41422-019-0264-2.
李庆, 徐求文, 李劲松. 卵子介导细胞重编程的基础与应用研究[J]. 生命科学, 2017, 29(10): 983-991. DOI:10.13376/j.cbls/2017131http://dx.doi.org/10.13376/j.cbls/2017131.
BAI M Z, HAN Y J, WU Y X, et al. Targeted genetic screening in mice through haploid embryonic stem cells identifies critical genes in bone development[J]. PLoS Biology, 2019, 17(7): e3000350. DOI:10.1371/journal.pbio.3000350http://dx.doi.org/10.1371/journal.pbio.3000350.
张帆, 李劲松. 小鼠和人类生殖干细胞形成、特化和维持[J]. 中国细胞生物学学报, 2019, 41(06): 1012-1020. DOI:10.11844/cjcb.2019.06.0002http://dx.doi.org/10.11844/cjcb.2019.06.0002.
LI Q, LI Y J, YANG S M, et al. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development[J]. Nature cell biology, 2018, 20(11): 1315-1325. DOI:10.1038/s41556-018-0202-4http://dx.doi.org/10.1038/s41556-018-0202-4.
GAVIN A C, BöSCHE M, KRAUSE R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141-147. DOI:10.1038/415141ahttp://dx.doi.org/10.1038/415141a.
李伟, 李劲松, 周琪. 单倍体干细胞研究进展[J]. 生命科学, 2016, 28(8): 862-866. DOI:10.13376/j.cbls/2016114http://dx.doi.org/10.13376/j.cbls/2016114.
JIANG J, YAN M, LI D S, et al. Genome tagging project: tag every protein in mice through ‘artificial spermatids’[J]. National Science Review, 2019, 6(3): 394-396. DOI:10.1093/nsr/nwy136http://dx.doi.org/10.1093/nsr/nwy136.
常柏然, 李劲松. 基于“人造精子细胞”的基因组标签计划[J]. 中国科学:生命科学, 2020, 50(5): 549-558. DOI:10.1360/SSV-2020-0071http://dx.doi.org/10.1360/SSV-2020-0071.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构