浏览全部资源
扫码关注微信
浙江工业大学环境学院,浙江 杭州 310032
[ "张全,浙江工业大学研究生院学术副院长,博士,健行特聘教授,博士生导师,国家特殊人才支持计划青年拔尖人才,浙江省杰出青年基金获得者。主要研究方向为环境暴露和健康,已发表SCI论文90余篇,其中第一/通讯作者60余篇(13篇发表于环境科学与工程国际顶级期刊Environmental Science & Technology),SCI引用2 000余次,H因子31。近五年先后获得教育部霍英东青年教师奖、浙江省自然科学奖等奖项。入选浙江省“151人才工程”,受邀担任北美环境化学与毒理学年会(SETAC)烟碱类农药生态与健康风险分会共同主席、Chinese Chem. Lett.青年编委等学术兼职。Email:quanzhang@zjut.edu.cn" ]
纸质出版日期:2023-12-15,
收稿日期:2023-11-08,
修回日期:2023-11-25,
扫 描 看 全 文
顾思嘉,胡士涛,张全.三种新型手性烟碱类农药立体选择性行为研究进展[J].新兴科学和技术趋势,2023,2(4):414-425.
GU Sijia,HU Shitao,ZHANG Quan.Progress on the stereoselectivity of three chiral neonicotinoids[J].Emerging Science and Technology,2023,2(4):414-425.
顾思嘉,胡士涛,张全.三种新型手性烟碱类农药立体选择性行为研究进展[J].新兴科学和技术趋势,2023,2(4):414-425. DOI: 10.12405/j.issn.2097-1486.2023.04.008.
GU Sijia,HU Shitao,ZHANG Quan.Progress on the stereoselectivity of three chiral neonicotinoids[J].Emerging Science and Technology,2023,2(4):414-425. DOI: 10.12405/j.issn.2097-1486.2023.04.008.
新型烟碱类农药是世界杀虫剂市场备受瞩目的一类高效低毒化合物。具有手性特征的新型烟碱类农药其光学纯异构体的杀虫效能、潜在毒性以及环境归趋行为都各不相同,因此有必要全面考察其立体选择性行为。本文对近年来新上市的三种手性新型烟碱类农药(环氧虫啶、哌虫啶以及氟啶虫胺腈)立体选择性行为进行了综述,以期为未来兼顾药效和环境利益的单体农药开发以及政府监管等方面提供数据支持,助力环境污染控制及生态健康保护。
Neonicotinoids are highly efficient compounds with low toxicity that have attracted much attention in the world insecticide market. Chiral neonicotinoids have different insecticidal efficacy, potential toxicity and environmental behaviour due to the difference in their individual optically pure isomers. Therefore, it is necessary to comprehensively investigate their stereoselectivity. This paper reviews the stereoselectivity of three chiral neonicotinoids (cycloxaprid, paichongding and sulfoxaflor) that were newly marketed in recent years. We expect to provide data support for the future development of single-isomer pesticides with both efficacy and environmental benefits, as well as for the governmental regulation, to help pollution control and ecological health protection.
手性新型烟碱类农药立体选择性环氧虫啶哌虫啶氟啶虫胺腈
chiral neonicotinoidsstereoselectivitycycloxapridpaichongdingsulfoxaflor
ULRICH E M, MORRISON C N, GOLDSMITH M R, et al. Chiral pesticides: Identification, description, and environmental implications implications[M]. WHITACRE D M, Reviews of environmental contamination and toxicology. Boston: Springer, 2012: 1-74.
GARRISON A W. Probing the enantioselectivity of chiral pesticides[J]. Environmental Science & Technology, 2006, 40(1): 16-23. DOI: 10.1021/es063022fhttp://dx.doi.org/10.1021/es063022f.
WILLIAMS A. Opportunities for chiral agrochemicals[J]. Pesticide Science, 1996, 46(1): 3-9.
郭浩铭, 魏一木, 刘雪科, 等. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5): 1108-1124. DOI: 10.16801/j.issn.1008-7303.2022.0108http://dx.doi.org/10.16801/j.issn.1008-7303.2022.0108.
BUSER H R, MÜLLER M D, POIGER T, et al. Environmental behavior of the chiral acetamide pesticide metalaxyl: Enantioselective degradation and chiral stability in soil [J]. Environmental Science & Technology, 2002, 36(2): 221-226. DOI: 10.1021/es010134shttp://dx.doi.org/10.1021/es010134s.
HALLMANN C A, FOPPEN R P B, VAN TURNHOUT C A M, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014, 511(7509): 341-343. DOI: 10.1038/nature13531http://dx.doi.org/10.1038/nature13531.
ROLAND KALLENBORN H H. Chiral environmental pollutants—trace analysis and ecotoxicology[M]. Berlin: Springer, 2001.
BABCOCK J M, GERWICK C B, HUANG J X, et al. Biological characterization of sulfoxaflor, a novel insecticide[J]. Pest Management Science, 2011, 67(3): 328-334. DOI: 10.1002/ps.2069http://dx.doi.org/10.1002/ps.2069.
SHAO X, SWENSON T L, CASIDA J E. Cycloxaprid insecticide: Nicotinic acetylcholine receptor binding site and metabolism[J]. Journal of Agricultural and Food Chemistry, 2013, 61(33): 7883-7888. DOI: 10.1021/jf403 0695http://dx.doi.org/10.1021/jf4030695.
CUI L, YUAN H, WANG Q, et al. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid aphis gossypii glover (hemiptera: Aphididae)[J]. Scientific Reports, 2018, 8(1): 8915. DOI: 10.1038/s41598-018-27035-7http://dx.doi.org/10.1038/s41598-018-27035-7.
XU X, BAO H, SHAO X, et al. Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, nilaparvata lugens[J]. Insect Molecular Biology, 2010, 19(1): 1-8. DOI: 10.1111/j.1365-2583.2009.00923.xhttp://dx.doi.org/10.1111/j.1365-2583.2009.00923.x.
ZHU Y, LOSO M R, WATSON G B, et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2950-2957. DOI: 10.1021/jf102765xhttp://dx.doi.org/10.1021/jf102765x.
ZHANG Q, FU L, CANG T, et al. Toxicological effect and molecular mechanism of the chiral neonicotinoid dinotefuran in honeybees[J]. Environmental Science & Technology, 2022, 56(2): 1104-1112. DOI: 10.1021/acs.est.1c05692http://dx.doi.org/10.1021/acs.est.1c05692.
ZHANG Q, LU Z, CHANG C H, et al. Dietary risk of neonicotinoid insecticides through fruit and vegetable consumption in school-age children[J]. Environment International, 2019, 126: 672-681. DOI: 10.1016/j.envint.2019.02.051http://dx.doi.org/10.1016/j.envint.2019.02.051.
GU S, FU L, WANG J, et al. Mtdna copy number in oral epithelial cells serves as a potential biomarker of mitochondrial damage by neonicotinoid exposure: A cross-sectional study[J]. Environmental Science & Technology, 2023, 57(42): 15816-15824. DOI: 10.1021/acs.est.3c03835http://dx.doi.org/10.1021/acs.est.3c03835.
HEGEMAN W J, LAANE R W. Enantiomeric enrichment of chiral pesticides in the environment[J]. Reviews of environmental contamination and toxicology, 2002, 173: 85-116. DOI: 2002:173:85-116http://dx.doi.org/2002:173:85-116.
XU C, LIN X, YIN S, et al. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants[J]. Environmental Pollution, 2018, 243(Pt B): 1274-1286. DOI: 10.1016/j.envpol.2018.09.095http://dx.doi.org/10.1016/j.envpol.2018.09.095.
XIE F, LIU H J, CAI W D. Enantioselectivity of racemic metolachlor and s-metolachlor in maize seedlings [J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45(8): 774-782. DOI: 10.1080/03601234.2010.515173http://dx.doi.org/10.1080/03601234.2010.515173.
DIAO J, XU P, LIU D, et al. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm eisenia fetida[J]. Journal of Hazardous Materials, 2011, 192(3): 1072-1078. DOI: 10.1016/j.jhazmat.2011.06.010http://dx.doi.org/10.1016/j.jhazmat.2011.06.010.
KONWICK B J, GARRISON A W, BLACK M C, et al. Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout[J]. Environmental Science & Technology, 2006, 40(9): 2930-2936. DOI: 10.1021/es0600678http://dx.doi.org/10.1021/es0600678.
RAMEZANI M K, OLIVER D P, KOOKANA R S, et al. Faster degradation of herbicidally-active enantiomer of imidazolinones in soils[J]. Chemosphere, 2010, 79(11): 1040-1045. DOI: 10.1016/j.chemosphere.2010.03.046http://dx.doi.org/10.1016/j.chemosphere.2010.03.046.
LIU W, GAN J, SCHLENK D, et al. Enantioselectivity in environmental safety of current chiral insecticides[J]. Proceedings of the National Academy of Sciences, 2005, 102(3): 701-706. DOI: 10.1073/pnas.0408847102http://dx.doi.org/10.1073/pnas.0408847102.
XU P, LIU D, DIAO J, et al. Enantioselective acute toxicity and bioaccumulation of benalaxyl in earthworm (eisenia fedtia)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8545-8549. DOI: 10.1021/jf902420ahttp://dx.doi.org/10.1021/jf902420a.
SHAO X, LEE P W, LIU Z, et al. Cis-configuration: A new tactic/rationale for neonicotinoid molecular design[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2943-2949. DOI: 10.1021/jf103499xhttp://dx.doi.org/10.1021/jf103499x.
SHAO X, FU H, XU X, et al. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: Design, synthesis, crystal structure, and insecticidal activities[J]. Journal of Agricultural and Food Chemistry, 2010, 58(5): 2696-2702. DOI: 10.1021/jf902531yhttp://dx.doi.org/10.1021/jf902531y.
SHAO X, LU H, BAO H, et al. The mode of action of a nitroconjugated neonicotinoid and the effects of target site mutation y151s on its potency[J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 440-445. DOI: 10.1016/j.ibmb.2011.04.005http://dx.doi.org/10.1016/j.ibmb.2011.04.005.
李超. 顺硝烯新烟碱杀虫剂的同位素标记合成、手性分离鉴定及土壤中的归趋研究[D]. 上海: 华东理工大学, 2013.
庄安祥. 新烟碱类杀虫剂及其类似物的毒力分析与毒理特性研究[D]. 南京: 南京农业大学, 2015.
LIU X, XU X, LI C, et al. Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil[J]. Chemosphere, 2015, 119: 334-341. DOI: 10.1016/j.chemosphere.2014.06.016http://dx.doi.org/10.1016/j.chemosphere.2014.06.016.
CHEN M, HE Y, YANG Y, et al. Non-stereoselective transformation of the chiral insecticide cycloxaprid in aerobic soil[J]. Science of The Total Environment, 2017, 579: 667-674. DOI: 10.1016/j.scitotenv.2016.11.043http://dx.doi.org/10.1016/j.scitotenv.2016.11.043.
LIU X, XU X, LI C, et al. Assessment of the environmental fate of cycloxaprid in flooded and anaerobic soils by radioisotopic tracing[J]. Science of The Total Environment, 2016, 543: 116-122. DOI: 10.1016/j.scitotenv.2015.11.018http://dx.doi.org/10.1016/j.scitotenv.2015.11.018.
CHENG X, ZHANG H, WANG Y, et al. Fate of the neonicotinoid insecticide cycloxaprid in different soils under oxic conditions[J]. Science of The Total Environment, 2022, 821: 153448. DOI: 10.1016/j.scitotenv.2022.153448http://dx.doi.org/10.1016/j.scitotenv.2022.153448.
张晗雪, 陈敏, 王伟, 等. 14c-环氧虫啶光学异构体在不同土壤中的矿化、结合残留及其在腐殖质中的分布[J]. 核农学报, 2016, 30(01): 145-153. DOI: 10.11869/j.issn.100-8551.2016.01.0145http://dx.doi.org/10.11869/j.issn.100-8551.2016.01.0145.
LIU X, XU X, ZHANG H, et al. Bioavailability and release of nonextractable (bound) residues of chiral cycloxaprid using geophagous earthworm metaphire guillelmi in rice paddy soil[J]. Science of The Total Environment, 2015, 526: 243-250. DOI: 10.1016/j.scitotenv.2015.03.105http://dx.doi.org/10.1016/j.scitotenv.2015.03.105.
ZHANG J, FU Q, WANG H, et al. Enantioselective uptake and translocation of a novel chiral neonicotinoid insecticide cycloxaprid in youdonger (brassica campestris subsp. Chinensis)[J]. Chirality, 2013, 25(11): 686-691. DOI: 10.1002/chir.22192http://dx.doi.org/10.1002/chir.22192.
CHENG X, WANG Y, LI W, et al. Nonstereoselective foliar absorption and translocation of cycloxaprid, a novel chiral neonicotinoid, in chinese cabbage[J]. Environmental Pollution, 2019, 252: 1593-1598. DOI: 10.1016/j.envpol.2019.06.122http://dx.doi.org/10.1016/j.envpol.2019.06.122.
程曦. 14c-环氧虫啶对映体在芸薹属油菜中的吸收运转和定向积累及代谢研究[D]. 杭州: 浙江大学, 2020.
CHENG X, ZHANG S, SHAO S, et al. Translocation and metabolism of the chiral neonicotinoid cycloxaprid in oilseed rape (brassica napus l.)[J]. Journal of Hazardous Materials, 2022, 426: 128125. DOI: 10.1016/j.jhazmat.2021.128125http://dx.doi.org/10.1016/j.jhazmat.2021.128125.
WU C, HUANG L, TANG S, et al. Enantioselective absorption and transformation of a novel chiral neonicotinoid [(14)c]-cycloxaprid in rats[J]. Environmental Pollution 2016, 213: 770-775. DOI: 10.1016/j.envpol.2016.03.037http://dx.doi.org/10.1016/j.envpol.2016.03.037.
KATAYAMA A, BHULA R, BURNS G R, et al. Bioavailability of xenobiotics in the soil environment[J]. Reviews of environmental contamination and toxicology, 2010, 203: 1-86. DOI: 10.1007/978-1-4419-1352-4_1http://dx.doi.org/10.1007/978-1-4419-1352-4_1.
BERRY D F, BOYD S A. Decontamination of soil through enhanced formation of bound residues[J]. Environmental Science & Technology, 1985, 19(11): 1132-1133. DOI: 10.1021/es00141a020http://dx.doi.org/10.1021/es00141a020.
郜红建, 蒋新. 土壤中结合残留态农药的生态环境效应[J]. 生态环境, 2004, 13(3): 5. DOI: 10.3969/j.issn.1674-5906.2004.03.028http://dx.doi.org/10.3969/j.issn.1674-5906.2004.03.028.
CRAVEN A. Bound residues of organic compounds in the soil: The significance of pesticide persistence in soil and water: A european regulatory view[J]. Environmental Pollution, 2000, 108(1): 15-18. DOI: 10.1016/S0269-7491(99)00198-0http://dx.doi.org/10.1016/S0269-7491(99)00198-0.
DANIEL O, ANDERSON J M. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm lumbricus rubellus hoffmeister[J]. Soil Biology and Biochemistry, 1992, 24(5): 465-470. DOI: 10.1016/0038-0717(92)90209-Ghttp://dx.doi.org/10.1016/0038-0717(92)90209-G.
BAROIS I, VILLEMIN G, LAVELLE P, et al. Transformation of the soil structure through pontoscolex corethrurus (oligochaeta) intestinal tract[J]. Geoderma, 1993, 56(1): 57-66. DOI: 10.1016/0016-7061(93)90100-Yhttp://dx.doi.org/10.1016/0016-7061(93)90100-Y.
KHAN S U, IVARSON K C. Microbiological release of unextracted (bound) residues from an organic soil treated with prometryn[J]. Journal of Agricultural and Food Chemistry, 1981, 29(6): 1301-1303. DOI: 10.1021/jf00108a052http://dx.doi.org/10.1021/jf00108a052.
GEVAO B, SEMPLE K T, JONES K C. Bound pesticide residues in soils: A review[J]. Environmental Pollution, 2000, 108(1): 3-14. DOI: 10.1016/S0269-7491(99)00197-9http://dx.doi.org/10.1016/S0269-7491(99)00197-9.
GEVAO B, MORDAUNT C, SEMPLE K T, et al. Bioavailability of nonextractable (bound) pesticide residues to earthworms[J]. Environmental Science & Technology, 2001, 35(3): 501-507. DOI: 10.1021/es000144dhttp://dx.doi.org/10.1021/es000144d.
NYHOLM J R, ASAMOAH R K, VAN DER WAL L, et al. Accumulation of polybrominated diphenyl ethers, hexabromobenzene, and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in earthworm (eisenia fetida). Effects of soil type and aging[J]. Environmental Science & Technology, 2010, 44(23): 9189-9194. DOI: 10.1021/es1023288http://dx.doi.org/10.1021/es1023288.
SANDS R, BACHELARD E P. Uptake of picloram by eucalypt leaf discs[J]. New Phytologist, 1973, 72(1): 87-99. DOI: 10.1111/j.1469-8137.1973.tb02013.xhttp://dx.doi.org/10.1111/j.1469-8137.1973.tb02013.x.
RIEDERER M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: Discussion of a fugacity-based model[J]. Environmental Science & Technology, 1990, 24(6): 829-837. DOI: 10.1021/es00076a006http://dx.doi.org/10.1021/es00076a006.
GREENE D W, BUKOVAC M J. Stomatal penetration: Effect of surfactants and role in foliar absorption[J]. American Journal of Botany, 1974, 61(1): 100-106. DOI: 10.1002/j.1537-2197.1974.tb06033.xhttp://dx.doi.org/10.1002/j.1537-2197.1974.tb06033.x.
HULL H M, MORTON H L, WHARRIE J R. Environmental influences on cuticle development and resultant foliar penetration[J]. The Botanical Review, 1975, 41(4): 421-452. DOI: 10.1007/BF02860832http://dx.doi.org/10.1007/BF02860832.
WANG C J, LIU Z Q. Foliar uptake of pesticides - present status and future challenge[J]. Pesticide Biochemistry and Physiology 2007, 87(1): 1-8. DOI: 10.1016/j.pestbp.2006.04.004http://dx.doi.org/10.1016/j.pestbp.2006.04.004.
GIERER F, VAUGHAN S, SLATER M, et al. A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure[J]. Environmental Pollution, 2019, 249: 236-247. DOI: 10.1016/j.envpol.2019.03.025http://dx.doi.org/10.1016/j.envpol.2019.03.025.
SHAO X, YE Z, BAO H, et al. Advanced research on cis-neonicotinoids[J]. Chimia (Aarau), 2011, 65(12): 957-960. DOI: 10.2533/chimia.2011.957http://dx.doi.org/10.2533/chimia.2011.957.
LIU W, YE J, JIN M. Enantioselective phytoeffects of chiral pesticides[J]. Journal of Agricultural and Food Chemistry, 2009, 57(6): 2087-2095. DOI: 10.1021/jf900079yhttp://dx.doi.org/10.1021/jf900079y.
LI J, ZHANG J, LI C, et al. Stereoisomeric isolation and stereoselective fate of insecticide paichongding in flooded paddy soils[J]. Environmental Science & Technology, 2013, 47(22): 12768-12774. DOI: 10.1021/es401279uhttp://dx.doi.org/10.1021/es401279u.
LI J, ZHANG S, WU C, et al. Stereoselective degradation and transformation products of a novel chiral insecticide, paichongding, in flooded paddy soil[J]. Journal of Agricultural and Food Chemistry, 2016, 64(40): 7423-7430. DOI: 10.1021/acs.jafc.6b02787http://dx.doi.org/10.1021/acs.jafc.6b02787.
FU Q, WANG Y, ZHANG J, et al. Soil microbial effects on the stereoselective mineralization, extractable residue, bound residue, and metabolism of a novel chiral cis neonicotinoid, paichongding[J]. Journal of Agricultural and Food Chemistry, 2013, 61(32): 7689-7695. DOI: 10.1021/jf4015153http://dx.doi.org/10.1021/jf4015153.
LI J, HUANG T, LI L, et al. Influence of soil factors on the stereoselective fate of a novel chiral insecticide, paichongding, in flooded paddy soils[J]. Journal of Agricultural and Food Chemistry, 2016, 64(43): 8109-8117. DOI: 10.1021/acs.jafc.6b03422http://dx.doi.org/10.1021/acs.jafc.6b03422.
付秋果. 三种代表性新型有机污染物在土壤与植物体系中的环境行为与归趋[D]. 杭州: 浙江大学, 2016.
FU Q, ZHANG J, XU X, et al. Diastereoselective metabolism of a novel cis-nitromethylene neonicotinoid paichongding in aerobic soils[J]. Environmental Science & Technology, 2013, 47(18): 10389-10396. DOI: 10.1021/es4023738http://dx.doi.org/10.1021/es4023738.
ZHAO X, SHAO X, ZOU Z, et al. Photodegradation of novel nitromethylene neonicotinoids with tetrahydropyridine-fixed cis configuration in aqueous solution[J]. Journal of Agricultural and Food Chemistry, 2010, 58(5): 2746-2754. DOI: 10.1021/jf902689jhttp://dx.doi.org/10.1021/jf902689j.
WANG H, YANG Z, LIU R, et al. Stereoselective uptake and distribution of the chiral neonicotinoid insecticide, paichongding, in chinese pak choi (brassica campestris ssp. Chinenesis)[J]. Journal of Hazardous Materials, 2013, 262: 862-869. DOI: 10.1016/j.jhazmat.2013.09.054http://dx.doi.org/10.1016/j.jhazmat.2013.09.054.
MA G, WANG Q, MA K, et al. Enantioselective metabolism of novel chiral insecticide paichongding by human cytochrome p450 3a4: A computational insight[J]. Environmental Pollution, 2023, 333: 122088. DOI: 10.1016/j.envpol.2023.122088http://dx.doi.org/10.1016/j.envpol.2023.122088.
TIAN Z, SHAO X, LI Z, et al. Synthesis, insecticidal activity, and qsar of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2288-2292. DOI: 10.1021/jf063418ahttp://dx.doi.org/10.1021/jf063418a.
WANG J, CHEN J, ZHU W, et al. Isolation of the novel chiral insecticide paichongding (ipp) degrading strains and biodegradation pathways of rr/ss-ipp and sr/rs-ipp in an aqueous system[J]. Journal of Agricultural and Food Chemistry, 2016, 64(40): 7431-7437. DOI: 10.1021/acs.jafc.6b02862http://dx.doi.org/10.1021/acs.jafc.6b02862.
CAI Z, WANG J, MA J, et al. Anaerobic degradation pathway of the novel chiral insecticide paichongding and its impact on bacterial communities in soils[J]. Journal of Agricultural and Food Chemistry, 2015, 63(32): 7151-7160. DOI: 10.1021/acs.jafc.5b02645http://dx.doi.org/10.1021/acs.jafc.5b02645.
CHEN J, ZHOU S, RONG Y, et al. Pyrosequencing reveals bacterial communities and enzyme activities differences after application of novel chiral insecticide paichongding in aerobic soils[J]. Applied Soil Ecology, 2017, 112: 18-27. DOI: 10.1016/j.apsoil.2016.12.007http://dx.doi.org/10.1016/j.apsoil.2016.12.007.
HIRANO T, ISHIDA T, OH K, et al. Biodegradation of chlordane and hexachlorobenzenes in river sediment[J]. Chemosphere, 2007, 67(3): 428-434. DOI: 10.1016/j.chemosphere.2006.09.087http://dx.doi.org/10.1016/j.chemosphere.2006.09.087.
BUERGE I J, POIGER T, MÜLLER M D, et al. Influence of ph on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils[J]. Environmental Science & Technology, 2006, 40(17): 5443-5450. DOI: 10.1021/es060817dhttp://dx.doi.org/10.1021/es060817d.
BAKER K L, MARSHALL S, NICOL G W, et al. Degradation of metalaxyl-m in contrasting soils is influenced more by differences in physicochemical characteristics than in microbial community composition after re-inoculation of sterilised soils[J]. Soil Biology & Biochemistry, 2010, 42(7): 1123-1131. DOI: 10.1016/j.soilbio.2010.03.016http://dx.doi.org/10.1016/j.soilbio.2010.03.016.
ZABALOY M C, GÓMEZ E, GARLAND J L, et al. Assessment of microbial community function and structure in soil microcosms exposed to glyphosate[J]. Applied Soil Ecology, 2012, 61: 333-339. DOI: 10.1016/j.apsoil.2011.12.004http://dx.doi.org/10.1016/j.apsoil.2011.12.004.
ZHANG C, LIU X, DONG F, et al. Soil microbial communities response to herbicide 2,4-dichlorophenoxyacetic acid butyl ester[J]. European Journal of Soil Biology, 2010, 46(2): 175-180. DOI: 10.1016/j.ejsobi.2009.12.005http://dx.doi.org/10.1016/j.ejsobi.2009.12.005.
BOLLAG J M, MYERS C J, MINARD R D. Biological and chemical interactions of pesticides with soil organic matter[J]. The Science of the total environment, 1992, 123-124: 205-217. DOI: 10.1016/0048-9697(92)90146-Jhttp://dx.doi.org/10.1016/0048-9697(92)90146-J.
KHIDKHAN K, IKENAKA Y, ICHISE T, et al. Interspecies differences in cytochrome p450-mediated metabolism of neonicotinoids among cats, dogs, rats, and humans[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 239: 108898. DOI: 10.1016/j.cbpc.2020.108898http://dx.doi.org/10.1016/j.cbpc.2020.108898.
CASIDA J E. Neonicotinoid metabolism: Compounds, substituents, pathways, enzymes, organisms, and relevance[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2923-2931. DOI: 10.1021/jf102438chttp://dx.doi.org/10.1021/jf102438c.
SPARKS T C, WATSON G B, LOSO M R, et al. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects[J]. Pesticide Biochemistry and Physiology, 2013, 107(1): 1-7. DOI: 10.1016/j.pestbp.2013.05.014http://dx.doi.org/10.1016/j.pestbp.2013.05.014.
CUTLER P, SLATER R, EDMUNDS A J, et al. Investigating the mode of action of sulfoxaflor: A fourth-generation neonicotinoid[J]. Pest Management Science, 2013, 69(5): 607-619. DOI: 10.1002/ps.3413http://dx.doi.org/10.1002/ps.3413.
BACCI L, CONVERTINI S, ROSSARO B. A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests[J]. Journal of Entomological and Acarological Research, 2018, 50(3): 51-71. DOI: 10.4081/jear.2018.7836http://dx.doi.org/10.4081/jear.2018.7836.
CHEN Z, DONG F, XU J, et al. Stereoselective separation and pharmacokinetic dissipation of the chiral neonicotinoid sulfoxaflor in soil by ultraperformance convergence chromatography/tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2014, 406(26): 6677-6690. DOI: 10.1007/s00216-014-8089-9http://dx.doi.org/10.1007/s00216-014-8089-9.
CHEN Z, DONG F, PAN X, et al. Influence of uptake pathways on the stereoselective dissipation of chiral neonicotinoid sulfoxaflor in greenhouse vegetables[J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2655-2660. DOI: 10.1021/acs.jafc.5b05940http://dx.doi.org/10.1021/acs.jafc.5b05940.
LIU H, JIANG M, LI Q. Determination of neonicotinoid sulfoxaflor residues and stereoselective degradation in pu‐erh tea and black tea by liquid chromatography-high‐resolution mass spectrometry[J]. Journal of Food Processing and Preservation, 2020, 44: e14589. DOI: 10.1111/jfpp.14589http://dx.doi.org/10.1111/jfpp.14589.
LIU H, JIANG M, LI Q. Nonstereoselective dissipation of sulfoxaflor in different puer tea processing[J]. Food Science & Nutrition, 2020, 8(9): 4929-4935. DOI: 10.1002/fsn3.1789http://dx.doi.org/10.1002/fsn3.1789.
DENG Y, WANG R, SONG B, et al. Enantioselective bioaccumulation and toxicity of rac-sulfoxaflor in zebrafish (danio rerio)[J]. Science of The Total Environment, 2022, 817: 153007. DOI: 10.1016/j.scitotenv.2022.153007http://dx.doi.org/10.1016/j.scitotenv.2022.153007.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构