浏览全部资源
扫码关注微信
1.运城学院 运城盐湖生态保护与资源利用厅市共建山西省重点实验室,山西 运城 044000
2.山西农业大学 食品科学与工程学院,山西 晋中030801
[ "李新,男,博士,教授,博士生导师,山西省高等学校优秀青年学术带头人,山西省重点扶持学科带头人,山西省服务产业创新学科群负责人,嗜盐微生物资源利用山西省科技创新人才团队带头人,现任运城学院党委常委、副校长。2009年毕业于中国科学院大连化学物理研究所生物化工专业,获得工学博士学位。主要研究方向为运城盐湖极端环境微生物资源开发与应用。在微生物分离培养及种群多样性分析、代谢产物分析研究等方面成果丰硕。共承担省部级以上科研项目13项。发表相关学术论文50余篇,其中SCI收录32篇,出版学术专著2部。获山西省科学技术奖(自然科学类)三等奖1项。积极开展产学研合作,解决企业发酵生产中菌种优选、噬菌体污染、活性物质分析检测等技术问题,共承担企事业单位横向课题5项。指导硕士研究生7名,其中已毕业3名。Email:lixin-eva@163.com" ]
纸质出版日期:2023-12-15,
收稿日期:2023-11-09,
修回日期:2023-12-05,
扫 描 看 全 文
于慧瑛,王帆,王卓等.嗜盐微生物资源及其生物活性物质研究进展[J].新兴科学和技术趋势,2023,2(4):382-396.
YU Huiying,WANG Fan,WANG Zhuo,et al.Research progress of halophiles and their bioactive substances[J].Emerging Science and Technology,2023,2(4):382-396.
于慧瑛,王帆,王卓等.嗜盐微生物资源及其生物活性物质研究进展[J].新兴科学和技术趋势,2023,2(4):382-396. DOI: 10.12405/j.issn.2097-1486.2023.04.006.
YU Huiying,WANG Fan,WANG Zhuo,et al.Research progress of halophiles and their bioactive substances[J].Emerging Science and Technology,2023,2(4):382-396. DOI: 10.12405/j.issn.2097-1486.2023.04.006.
嗜盐微生物是一类只有在一定浓度的盐介质中才能良好生长的特殊微生物资源,通常分布于盐湖、盐碱地、盐场和盐渍食物等各种高盐环境中,是极端微生物的重要组成部分。由于特殊的生存条件,嗜盐微生物形成了独特的基因类型、生理结构和代谢机制,是研究生物进化、生命起源及生物多样性的重要材料。此外,作为一类极具应用前景的微生物资源,嗜盐微生物可产生许多具有特殊功能的代谢产物,在食品、医药、造纸和环保等领域具有十分重要的开发利用价值。本文主要针对嗜盐微生物的种类、分类地位、嗜盐机制及其产生的各种生物活性物质与应用等作一简要概述。
Halophiles are a special kind of microorganisms that grow well in certain concentrations of salt, such as salt lakes, saline-alkali lands, salt pans, and saline foods, etc., and it is also an important component of the extremophilic microorganism. Special living environment leads to the unique gene types, physiological structure, and metabolic mechanism of the halophiles, which provide important material for the study of the biological evolution, the origin of life, and the biodiversity. In addition, halophiles also produces a variety of novel bioactive substances, which have important development and utilization value in the fields of food, medicine, and environmental protection, etc. This paper introduces briefly the types of halophiles, the taxonomic status, the halophilic mechanisms, and various bioactive substances and their application.
嗜盐微生物嗜盐机制生物活性物质开发利用
halophileshalophilic mechanismbioactive substancesapplication
KUSHNER D J. Life in high salt and solute concentrations: halophilic bacteria[J]. Microbial life in extreme environments, 1978: 317-368.
韩帅波.盐环境来源微生物多相分类及嗜盐古菌基因组适应性与演化研究[D].杭州:浙江大学,2022. DOI:10.27461/d.cnki.gzjdx.2021.001807http://dx.doi.org/10.27461/d.cnki.gzjdx.2021.001807.
GOCHNAUER M B, LEPPARD G G, KOMARATAT P, et al. Isolation and characterization of Actinopolyspora halophila, gen. et sp. nov., an extremely halophilic actinomycete [J]. Can J Microbiol, 1975, 21(10): 1500-1511. DOI: 10.1139/m75-222http://dx.doi.org/10.1139/m75-222.
朱康康.新疆3个盐湖放线菌多样性研究[D].昆明:云南大学,2022. DOI: 10.27456/d.cnki.gyndu.2021.002542http://dx.doi.org/10.27456/d.cnki.gyndu.2021.002542.
张正芸,陆晓菊,官会林,等.无机离子对嗜盐放线菌株YIM90615代谢产物多样性的影响[J].云南大学学报(自然科学版), 2015, 37(01):147-154. DOI:10.7540/j.ynu.20140419http://dx.doi.org/10.7540/j.ynu.20140419.
DENNIS P P, SHIMMIN L C. Evolutionary divergence and salinity-mediated selection in halophilic archaea [J]. Microbiol Mol Biol Rev, 1997, 61(1): 90-104. DOI: 10.1128/mmbr.61.1.90-104.1997http://dx.doi.org/10.1128/mmbr.61.1.90-104.1997.
OREN A. The ecology of the extremely halophilic archaea [J]. FEMS Microbiology Reviews, 1994, 13(4): 415-439. DOI: 10.1111/j.1574-6976.1994.tb00060.xhttp://dx.doi.org/10.1111/j.1574-6976.1994.tb00060.x.
VON WEYMARN N, NYYSSOLA A, REINIKAINEN T, et al. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis [J]. Appl Microbiol Biotechnol, 2001, 55(2): 214-218. DOI: 10.1007/s002530000515http://dx.doi.org/10.1007/s002530000515.
MATHESON A T, SPROTT G D, MCDONALD I J, et al. Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology [J]. Can J Microbiol, 1976, 22(6): 780-786. DOI: 10.1139/m76-114http://dx.doi.org/10.1139/m76-114.
OH S, KOGURE K, OHWADA K, et al. Correlation between Possession of a Respiration-Dependent Na Pump and Na Requirement for Growth of Marine Bacteria [J]. Applied and environmental microbiology, 1991, 57(6): 1844-1846. DOI: 10.1128/aem.57.6.1844-1846.1991http://dx.doi.org/10.1128/aem.57.6.1844-1846.1991.
GUNDE-CIMERMAN N, PLEMENITAS A, OREN A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations [J]. FEMS Microbiol Rev, 2018, 42(3): 353-375. DOI: 10.1093/femsre/fuy009http://dx.doi.org/10.1093/femsre/fuy009.
王伟伟, 唐鸿志, 许平. 嗜盐微生物耐盐机制相关基因的研究进展 [J]. 微生物学通报, 2015, 42(03): 550-558. DOI: 10.13344/j.microbiol.china.140528http://dx.doi.org/10.13344/j.microbiol.china.140528.
ROBERT H, LE MARREC C, BLANCO C, et al. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila [J]. Applied and environmental microbiology, 2000, 66(2): 509-517. DOI: 10.1128/AEM.66.2.509-517.2000http://dx.doi.org/10.1128/AEM.66.2.509-517.2000.
SOWERS K R, GUNSALUS R P. Halotolerance in Methanosarcina spp.: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation [J]. Applied and environmental microbiology, 1995, 61(12): 4382-4388. DOI: 10.1128/aem.61.12.4382-4388.1995http://dx.doi.org/10.1128/aem.61.12.4382-4388.1995.
刘会强,张立丰,韩彬,等.嗜盐菌的研究新进展[J].新疆师范大学学报:自然科学版, 2005, 24(3):5.DOI:10.3969/j.issn.1008-9659.2005.03.028http://dx.doi.org/10.3969/j.issn.1008-9659.2005.03.028.
NANGO E, ROYANT A, KUBO M, et al. A three-dimensional movie of structural changes in bacteriorhodopsin [J]. Science, 2016, 354(6319): 1552-1557. DOI: 10.1126/science.aah3497http://dx.doi.org/10.1126/science.aah3497.
YANG Q, CHEN D. Na(+) Binding and Transport: Insights from Light-Driven Na(+)-Pumping Rhodopsin [J]. Molecules, 2023, 28(20). DOI: 10.3390/molecules28207135http://dx.doi.org/10.3390/molecules28207135.
SUBRAMANIAM S, HENDERSON R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin [J]. Nature, 2000, 406(6796): 653-657. DOI: 10.1038/35020614http://dx.doi.org/10.1038/35020614.
Oren A. Ecology of extremely halophilic microorganisms[M]. The biology of halophilic bacteria. CRC Press, 2020: 25-53.
陈龙,金阿南,马香娟,等.微生物高盐渗透适应策略及其耐盐强化研究进展[J].微生物学报, 2022, 62(09):3306-3317.DOI:10.13343/j.cnki.wsxb.20220050http://dx.doi.org/10.13343/j.cnki.wsxb.20220050.
BROWN A D, SIMPSON J R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols [J]. J Gen Microbiol, 1972, 72(3): 589-591. DOI: 10.1099/00221287-72-3-589http://dx.doi.org/10.1099/00221287-72-3-589.
EMPADINHAS N, DA COSTA M S. Diversity and biosynthesis of compatible solutes in hyper/thermophiles [J]. Int Microbiol, 2006, 9(3): 199-206. DOI: 10.2436/IM.V9I3.9576http://dx.doi.org/10.2436/IM.V9I3.9576.
LAMOSA P, MARTINS L O, DA COSTA M S, et al. Effects of temperature, salinity, and medium composition on compatible solute accumulation by thermococcus spp [J]. Applied and environmental microbiology, 1998, 64(10): 3591-3598. DOI: 10.1128/AEM.64.10.3591-3598.1998http://dx.doi.org/10.1128/AEM.64.10.3591-3598.1998.
MARTINS L O, SANTOS H. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature [J]. Applied and environmental microbiology, 1995, 61(9): 3299-3303. DOI: 10.1128/aem.61.9.3299-3303.1995http://dx.doi.org/10.1128/aem.61.9.3299-3303.1995.
CZECH L, HERMANN L, STOVEKEN N, et al. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis [J]. Genes (Basel), 2018, 9(4): 177. DOI: 10.3390/genes9040177http://dx.doi.org/10.3390/genes9040177.
赵百锁,杨礼富,王磊,等.中度嗜盐菌相容性溶质机制的研究进展[J].微生物学报, 2007(05):937-941. DOI: 10.13343/j.cnki.wsxb.2007.05.014http://dx.doi.org/10.13343/j.cnki.wsxb.2007.05.014.
KHALEQUE H N, GONZALEZ C, SHAFIQUE R, et al. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis [J]. Frontiers in microbiology, 2019, 10: 155. DOI: 10.3389/fmicb.2019.00155http://dx.doi.org/10.3389/fmicb.2019.00155.
VENTOSA A, NIETO J J, OREN A. Biology of moderately halophilic aerobic bacteria [J]. Microbiol Mol Biol Rev, 1998, 62(2): 504-544. DOI: 10.1128/MMBR.62.2.504-544.1998http://dx.doi.org/10.1128/MMBR.62.2.504-544.1998.
于志同,刘兴起,王永,等.13.8ka以来内蒙古吉兰泰盐湖的演化过程[J].湖泊科学, 2012, 24(4):8. DOI: 10.3969/j.issn.1003-5427.2012.04.018http://dx.doi.org/10.3969/j.issn.1003-5427.2012.04.018.
郑喜玉 刘建华. 新疆盐湖卤水成分及其成因 [J]. 地理科学, 1996 (02): 115-123. DOI: 10.13249/j.cnki.sgs.1996.02.115http://dx.doi.org/10.13249/j.cnki.sgs.1996.02.115.
杨萌萌. 运城盐湖地质特征与成因浅析 [J]. 西部探矿工程, 2022, 34(10): 144-147,150. DOI: 10.3969/j.issn.1004-5716.2022.10.045http://dx.doi.org/10.3969/j.issn.1004-5716.2022.10.045.
杨霞, 伍洲生. 运城盐湖化学资源:无机盐的开发 [J]. 运城学院学报, 2020, 38(03): 9-13. DOI: 10.15967/j.cnki.cn14-1316/g4.2020.03.003http://dx.doi.org/10.15967/j.cnki.cn14-1316/g4.2020.03.003.
邹静,米琴,马永贵,等.Na+,K+,Mg2+,Ca2+浓度对嗜盐放线菌生长的影响[J].青海农林科技, 2005(03):1-3. DOI: 10.3969/j.issn.1004-9967.2005.03.001http://dx.doi.org/10.3969/j.issn.1004-9967.2005.03.001.
唐蜀昆,李文均,张永光,等.嗜盐放线菌生物学特性初步研究[J].微生物学通报, 2003(04):15-19. DOI: 10.13344/j.microbiol.china.2003.04.004http://dx.doi.org/10.13344/j.microbiol.china.2003.04.004.
MULLER V, OREN A. Metabolism of chloride in halophilic prokaryotes [J]. Extremophiles, 2003, 7(4): 261-266. DOI: 10.1007/s00792-003-0332-9http://dx.doi.org/10.1007/s00792-003-0332-9.
ROESSLER M, MULLER V V. Quantitative and physiological analyses of chloride dependence of growth of halobacillus halophilus [J]. Applied and environmental microbiology, 1998, 64(10): 3813-3817. DOI: 10.1128/AEM.64.10.3813-3817.1998http://dx.doi.org/10.1128/AEM.64.10.3813-3817.1998.
ROESSLER M, MULLER V. Chloride dependence of glycine betaine transport in Halobacillus halophilus [J]. FEBS Lett, 2001, 489(2-3): 125-128. DOI: 10.1016/s0014-5793(01)02099-3http://dx.doi.org/10.1016/s0014-5793(01)02099-3.
RODRIGUEZ-VALERA F, JUEZ G, KUSHNER D J. Halocins: salt-dependent bacteriocins produced by extremely halophilic rods [J]. Canadian Journal of Microbiology, 1982, 28(1): 151-154. DOI: 10.1139/m82-019http://dx.doi.org/10.1139/m82-019.
TORREBLANCA M, MESEGUER I, VENTOSA A. Production of halocin is a practically universal feature of archaeal halophilic rods [J]. Letters in Applied Microbiology, 1994, 19(4): 201-205. DOI: 10.1111/j.1472-765X.1994.tb00943.xhttp://dx.doi.org/10.1111/j.1472-765X.1994.tb00943.x.
KUMAR V, SINGH B, VAN BELKUM M J, et al. Halocins, natural antimicrobials of Archaea: Exotic or special or both? [J]. Biotechnol Adv, 2021, 53: 107834. DOI: 10.1016/j.biotechadv.2021.107834http://dx.doi.org/10.1016/j.biotechadv.2021.107834.
MESEGUER I, TORREBLANCA M, KONISHI T. Specific inhibition of the halobacterial Na+/H+ antiporter by halocin H6 [J]. The Journal of biological chemistry, 1995, 270(12): 6450-6455. DOI: 10.1074/jbc.270.12.6450http://dx.doi.org/10.1074/jbc.270.12.6450.
CHEUNG J, DANNA K J, O'CONNOR E M, et al. Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4 [J]. Journal of bacteriology, 1997, 179(2): 548-551. DOI: 10.1128/jb.179.2.548-551.1997http://dx.doi.org/10.1128/jb.179.2.548-551.1997.
O’CONNOR E M, SHAND R F. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics [J]. J Ind Microbiol Biotechnol, 2002, 28(1): 23-31. DOI: 10.1038/sj/jim/7000190http://dx.doi.org/10.1038/sj/jim/7000190.
PLATAS G, MESEGUER I, AMILS R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a [J]. Int Microbiol, 2002, 5(1): 15-19. DOI: 10.1007/s10123-002-0053-4http://dx.doi.org/10.1007/s10123-002-0053-4.
CHEN S, SUN S, KORFANTY G A, et al. A Halocin Promotes DNA Uptake in Haloferax mediterranei [J]. Frontiers in microbiology, 2019, 10: 1960. DOI: 10.3389/fmicb.2019.01960http://dx.doi.org/10.3389/fmicb.2019.01960.
TORREBLANCA M, MESEGUER I, RODRíGUEZ-VALERA F. Halocin H6, a bacteriocin from Haloferax gibbonsii [J]. Microbiology, 1989, 135(10): 2655-2661. DOI: 10.1099/00221287-135-10-2655http://dx.doi.org/10.1099/00221287-135-10-2655.
LEQUERICA J L, O’CONNOR J E, SUCH L, et al. A halocin acting on Na+/H+ exchanger of haloarchaea as a new type of inhibitor in NHE of mammals [J]. J Physiol Biochem, 2006, 62(4): 253-262. DOI: 10.1007/BF03165754http://dx.doi.org/10.1007/BF03165754.
RDEST U, STURM M. Protein purification: Micro to macro [J]. Journal of Cellular Biochemistry, 1987, 35(S11C): 163-186. DOI: 10.1002/jcb.240350704http://dx.doi.org/10.1002/jcb.240350704.
PRICE L B, SHAND R F. Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a [J]. Journal of bacteriology, 2000, 182(17): 4951-4958. DOI: 10.1128/JB.182.17.4951-4958.2000http://dx.doi.org/10.1128/JB.182.17.4951-4958.2000.
LI Y, XIANG H, LIU J, et al. Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092 [J]. Extremophiles, 2003, 7(5): 401-407. DOI: 10.1007/s00792-003-0335-6http://dx.doi.org/10.1007/s00792-003-0335-6.
SOPPA J, OESTERHELT D. Halobacterium sp. GRB: a species to work with!? [J]. Can J Microbiol, 1989, 35(1): 205-209. DOI: 10.1139/m89-032http://dx.doi.org/10.1139/m89-032.
KAVITHA P, LIPTON A, SARIKA A, et al. Growth characteristics and halocin production by a new isolate, Haloferax volcanii KPS1 from Kovalam solar saltern (India) [J]. Res J Biol Sci, 2011, 6: 257-262. DOI: 10.3923/rjbsci.2011.257.262http://dx.doi.org/10.3923/rjbsci.2011.257.262.
PASIC L, VELIKONJA B H, ULRIH N P. Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a [J]. Prep Biochem Biotechnol, 2008, 38(3): 229-245. DOI: 10.1080/10826060802164637http://dx.doi.org/10.1080/10826060802164637.
BESSE A, PEDUZZI J, REBUFFAT S, et al. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins [J]. Biochimie, 2015, 118: 344-355. DOI: 10.1016/j.biochi.2015.06.004http://dx.doi.org/10.1016/j.biochi.2015.06.004.
KUMAR V, TIWARI S K. Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1 [J]. Process Biochemistry, 2017, 61: 202-208. DOI: 10.1016/j.procbio.2017.06.010http://dx.doi.org/10.1016/j.procbio.2017.06.010.
KUMAR V, SAXENA J, TIWARI S K. Description of a halocin-producing Haloferax larsenii HA1 isolated from Pachpadra salt lake in Rajasthan [J]. Arch Microbiol, 2016, 198(2): 181-292. DOI: 10.1007/s00203-015-1175-3http://dx.doi.org/10.1007/s00203-015-1175-3.
KUMAR V, TIWARI S K. Halocin diversity among Halophilic Archaea and their applications [J]. Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Volume 1 Microbial Diversity in Normal & Extreme Environments, 2019: 497-532. DOI: 10.1007/978-981-13-8315-1_16http://dx.doi.org/10.1007/978-981-13-8315-1_16.
HASELTINE C, HILL T, MONTALVO-RODRIGUEZ R, et al. Secreted euryarchaeal microhalocins kill hyperthermophilic crenarchaea [J]. Journal of bacteriology, 2001, 183(1): 287-291. DOI: 10.1128/JB.183.1.287-291.2001http://dx.doi.org/10.1128/JB.183.1.287-291.2001.
KARTHIKEYAN P, BHAT S G, CHANDRASEKARAN M. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India [J]. Saudi J Biol Sci, 2013, 20(2): 205-212. DOI: 10.1016/j.sjbs.2013.02.002http://dx.doi.org/10.1016/j.sjbs.2013.02.002.
MAZGUENE S, ROSSI M, GOGLIETTINO M, et al. Isolation and characterization from solar salterns of North Algeria of a haloarchaeon producing a new halocin [J]. Extremophiles, 2018, 22(2): 259-270. DOI: 10.1007/s00792-017-0994-3http://dx.doi.org/10.1007/s00792-017-0994-3.
MADERN D, EBEL C, ZACCAI G. Halophilic adaptation of enzymes [J]. Extremophiles, 2000, 4(2): 91-98. DOI: 10.1007/s007920050142http://dx.doi.org/10.1007/s007920050142.
MEVARECH M, FROLOW F, GLOSS L M. Halophilic enzymes: proteins with a grain of salt [J]. Biophys Chem, 2000, 86(2-3): 155-164. DOI: 10.1016/s0301-4622(00)00126-5http://dx.doi.org/10.1016/s0301-4622(00)00126-5.
石云云, 李信志, 张桂敏. 微生物嗜盐酶的研究进展 [J]. 微生物学报, 2017, 57(08): 1180-1188. DOI: 10.13343/j.cnki.wsxb.20170148http://dx.doi.org/10.13343/j.cnki.wsxb.20170148.
KAMEKURA M, HAMAKAWA T, ONISHI H. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP [J]. Applied and environmental microbiology, 1982, 44(4): 994-995. DOI: 10.1128/aem.44.4.994-995.1982http://dx.doi.org/10.1128/aem.44.4.994-995.1982.
SHI-FEN W, JIAN Y. Treatment of petro-fermentation wastewater with high salt content [J]. Water and Wastewater Engineering, 1999, 25(3): 35-38.
LE BORGNE S, PANIAGUA D, VAZQUEZ-DUHALT R. Biodegradation of organic pollutants by halophilic bacteria and archaea [J]. J Mol Microbiol Biotechnol, 2008, 15(2-3): 74-92. DOI: 10.1159/000121323http://dx.doi.org/10.1159/000121323.
KULICHEVSKAYA I, MILEKHINA E, BORZENKOV I, et al. Oxidation of petroleum-hydrocarbons by extremely halophilic archaebacteria [J]. Microbiology, 1991, 60(5): 596-601.
赵喆,张兰英,李爽,等.一株降解PCBs嗜盐菌的筛选及产酶条件研究[J].农业环境科学学报,2007(01):310-313. DOI: 10.3321/j.issn:1672-2043.2007.01.062http://dx.doi.org/10.3321/j.issn:1672-2043.2007.01.062.
MIJTS B N, PATEL B K C. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme [J]. Microbiology (Reading), 2002, 148(Pt 8): 2343-2349. DOI: 10.1099/00221287-148-8-2343http://dx.doi.org/10.1099/00221287-148-8-2343.
DEUTCH C E. Characterization of a salt-tolerant extracellular a-amylase from Bacillus dipsosauri [J]. Lett Appl Microbiol, 2002, 35(1): 78-84. DOI: 10.1046/j.1472-765x.2002.01142.xhttp://dx.doi.org/10.1046/j.1472-765x.2002.01142.x.
AMOOZEGAR M A, MALEKZADEH F, MALIK K A. Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2 [J]. J Microbiol Methods, 2003, 52(3): 353-359. DOI: 10.1016/s0167-7012(02)00191-4http://dx.doi.org/10.1016/s0167-7012(02)00191-4.
PEREZ-POMARES F, BAUTISTA V, FERRER J, et al. Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei [J]. Extremophiles, 2003, 7(4): 299-306. DOI: 10.1007/s00792-003-0327-6http://dx.doi.org/10.1007/s00792-003-0327-6.
康壮丽,郝凤霞,胡文革,等.中度嗜盐菌产α-淀粉酶发酵条件优化和酶活性质研究[J].中国酿造,2009(04):80-83. DOI: 10.3969/j.issn.0254-5071.2009.04.023http://dx.doi.org/10.3969/j.issn.0254-5071.2009.04.023.
WEJSE P L, INGVORSEN K, MORTENSEN K K. Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium [J]. Extremophiles, 2003, 7(5): 423-431. DOI: 10.1007/s00792-003-0342-7http://dx.doi.org/10.1007/s00792-003-0342-7.
WAINO M, INGVORSEN K. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis [J]. Extremophiles, 2003, 7(2): 87-93. DOI: 10.1007/s00792-002-0299-yhttp://dx.doi.org/10.1007/s00792-002-0299-y.
SANCHEZ-PORRO C, MELLADO E, BERTOLDO C, et al. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76 [J]. Extremophiles, 2003, 7(3): 221-228. DOI: 10.1007/s00792-003-0316-9http://dx.doi.org/10.1007/s00792-003-0316-9.
SHI W L, ZHONG C Q, TANG B, et al. [Purification and characterization of extracellular halophilic protease from haloarchaea Natrinema sp. R6-5] [J]. Wei Sheng Wu Xue Bao, 2007, 47(1): 161-163. DOI: 10.13343/j.cnki.wsxb.2007.01.033http://dx.doi.org/10.13343/j.cnki.wsxb.2007.01.033.
KARBALAEI-HEIDARI H R, AMOOZEGAR M A, HAJIGHASEMI M, et al. Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis [J]. J Ind Microbiol Biotechnol, 2009, 36(1): 21-27. DOI: 10.1007/s10295-008-0466-yhttp://dx.doi.org/10.1007/s10295-008-0466-y.
AMOOZEGAR M A, FATEMI A Z, KARBALAEIHEIDARI H R, et al. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004 [J]. Microbiological Research, 2007, 162(4): 369-377. DOI: 10.1016/J.MICRES.2006.02.007http://dx.doi.org/10.1016/J.MICRES.2006.02.007.
张萌,张晓梅,窦文芳,等. 嗜盐脂肪酶产生菌的筛选及其粗酶性质[J]. 微生物学通报, 2009, 36(01):14-19. DOI: CNKI:SUN:WSWT.0.2009-01-008http://dx.doi.org/CNKI:SUN:WSWT.0.2009-01-008.
AMOOZEGAR M A, SALEHGHAMARI E, KHAJEH K, et al. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2 [J]. J Basic Microbiol, 2008, 48(3): 160-167. DOI: 10.1002/jobm.200700361http://dx.doi.org/10.1002/jobm.200700361.
AYGAN A, ARIKAN B. A new halo-alkaliphilic, ther-mostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van soda lake [J]. Int J Agric Biol, 2008, 10(4): 369-374.
WANG C-Y, HSIEH Y-R, NG C-C, et al. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05 [J]. Enzyme and Microbial Technology, 2009, 44(6-7): 373-379. DOI:10.1016/J.ENZMICTEC.2009.02.006http://dx.doi.org/10.1016/J.ENZMICTEC.2009.02.006.
TOKUNAGA H, ISHIBASHI M, ARAKAWA T, et al. Highly efficient renaturation of beta-lactamase isolated from moderately halophilic bacteria [J]. FEBS Lett, 2004, 558(1-3): 7-12. DOI: 10.1016/S0014-5793(03)01508-4http://dx.doi.org/10.1016/S0014-5793(03)01508-4.
董伟, 郭立忠, 李翠翠, 等. 一株高产酯酶中度嗜盐菌的分离、鉴定及酯酶部分酶学性质的研究[J]. 微生物学通报, 2009, 36(04):479-483. DOI: CNKI:SUN: WSWT.0.2009-04-007http://dx.doi.org/CNKI:SUN:WSWT.0.2009-04-007.
WAINø M, INGVORSEN K. Production of halostable β-mannanase and β-mannosidase by strain NN, a new extremely halotolerant bacterium [J]. Applied microbiology and biotechnology, 1999, 52: 675-680. DOI: 10.1007/s002530051578http://dx.doi.org/10.1007/s002530051578.
KATOH R, NGATA S, OZAWA A, et al. Purification and characterization of leucine dehydrogenase from an alkaliphilic halophile, Natronobacterium magadii MS-3 [J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 23(2-6): 231-238. DOI: 10.1016/S1381-1177(03)00085-7http://dx.doi.org/10.1016/S1381-1177(03)00085-7.
NAGATA S, KOBAYASHI Y, SHINKAWA S, et al. Novel halophilic 2-aminobutyrate dehydrogenase from Halobacterium saccahrovorum DSM 1137 [J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 23(2-6): 223-230. DOI: 10.1016/S1381-1177(03)00084-5http://dx.doi.org/10.1016/S1381-1177(03)00084-5.
ONISHI H, MORI T, TAKEUCHI S, et al. Halophilic Nuclease of a Moderately Halophilic Bacillus sp.: Production, Purification, and Characterization [J]. Applied and environmental microbiology, 1983, 45(1): 24-30. DOI: 10.1128/aem.45.1.24-30.1983http://dx.doi.org/10.1128/aem.45.1.24-30.1983.
HATORI Y, SATO M, ORISHIMO K, et al. Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1 [J]. Chitin Chitosan Res, 2006, 12: 201. DOI: 10.3118/JJSE.9.19http://dx.doi.org/10.3118/JJSE.9.19.
MIYASHITA Y, OHMAE E, NAKASONE K, et al. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1 [J]. Extremophiles, 2015, 19(2): 479-493. DOI:10.1007/s00792-015-0732-7http://dx.doi.org/10.1007/s00792-015-0732-7.
TRUONG L V, TUYEN H, HELMKE E, et al. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes [J]. Extremophiles, 2001, 5(1): 35-44. DOI: 10.1007/s007920000170http://dx.doi.org/10.1007/s007920000170.
SMIATEK J, HARISHCHANDRA R K, RUBNER O, et al. Properties of compatible solutes in aqueous solution [J]. Biophysical chemistry, 2012, 160(1): 62-68. DOI: 10.1016/j.bpc.2011.09.007http://dx.doi.org/10.1016/j.bpc.2011.09.007.
陈李胜. 相容性溶质强化高盐废水厌氧生物处理效果的研究[D]. 南昌: 华东交通大学, 2023. DOI: 10.27147/d.cnki.ghdju.2022.000238http://dx.doi.org/10.27147/d.cnki.ghdju.2022.000238.
纪美娜, 杨浩. 相容性溶质对强化耐盐苯酚降解菌群的影响 [J]. 工业微生物, 2023, 53(03): 169-171. DOI: 10.3969/j.issn.1001-6678.2023.03.042http://dx.doi.org/10.3969/j.issn.1001-6678.2023.03.042.
ROBERTS M F. Organic compatible solutes of halotolerant and halophilic microorganisms [J]. Saline Syst, 2005, 1: 5. DOI: 10.1186/1746-1448-1-5http://dx.doi.org/10.1186/1746-1448-1-5.
JADHAV K, KUSHWAH B, JADHAV I. Insight into compatible solutes from halophiles: exploring significant applications in biotechnology [J]. Microbial bioprospecting for sustainable development, 2018: 291-307. DOI: 10.1007/978-981-13-0053-0_16http://dx.doi.org/10.1007/978-981-13-0053-0_16.
GALINSKI E A. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection [J]. Experientia, 1993, 49: 487-496. DOI: 10.3969/j.issn.1003-5427.2012.04.018http://dx.doi.org/10.3969/j.issn.1003-5427.2012.04.018.
LOUIS P, TRüPER H G, GALINSKI E A. Survival of Escherichia coli during drying and storage in the presence of compatible solutes [J]. Applied Microbiology and Biotechnology, 1994, 41: 684-688. DOI: 10.1007/BF00167285http://dx.doi.org/10.1007/BF00167285.
PFIFFNER S M, MCINERNEY M J, JENNEMAN G E, et al. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer [J]. Applied and environmental microbiology, 1986, 51(6): 1224-1229. DOI: 10.1128/aem.51.6.1224-1229.1986http://dx.doi.org/10.1128/aem.51.6.1224-1229.1986.
BéJAR V, LLAMAS I, CALVO C, et al. Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina [J]. Journal of Biotechnology, 1998, 61(2): 135-141. DOI: 10.1016/s0168-1656(98)00024-8http://dx.doi.org/10.1016/s0168-1656(98)00024-8.
QUESADA E, BEJAR V, CALVO C. Exopolysaccharide production by Volcaniella eurihalina [J]. Experientia, 1993, 49(12): 1037-1041. DOI: 10.1007/bf01929910http://dx.doi.org/10.1007/bf01929910.
CALVO C, FERRER M R, MARTINEZ-CHECA F, et al. Some rheological properties of the extracellular polysaccharide produced byVolcaniella eurihalina F2-7 [J]. Applied Biochemistry and Biotechnology, 1995, 55(1): 45-54. DOI: 10.1007/bf02788747http://dx.doi.org/10.1007/bf02788747.
PEREZ-FERNANDEZ M E, QUESADA E, GALVEZ J, et al. Effect of exopolysaccharide V2-7, isolated from Halomonas eurihalina, on the proliferation in vitro of human peripheral blood lymphocytes [J]. Immunopharmacol Immunotoxicol, 2000, 22(1): 131-141. DOI: 10.3109/08923970009016411http://dx.doi.org/10.3109/08923970009016411.
FERNANDEZ-CASTILLO R, RODRIGUEZ-VALERA F, GONZALEZ-RAMOS J, et al. Accumulation of Poly (beta-Hydroxybutyrate) by Halobacteria [J]. Applied and environmental microbiology, 1986, 51(1): 214-216. DOI: 10.1128/aem.51.1.214-216.1986http://dx.doi.org/10.1128/aem.51.1.214-216.1986.
TAN D, WANG Y, TONG Y, et al. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs) [J]. Trends Biotechnol, 2021, 39(9): 953-963. DOI: 10.1016/j.tibtech.2020.11.010http://dx.doi.org/10.1016/j.tibtech.2020.11.010.
张梦颖,李雅慧,詹元龙,等.嗜盐菌生物合成聚羟基脂肪酸酯(PHAs)的研究进展[J].生物技术通报, 2019, 35(06):172-177. DOI:10.13560/j.cnki.biotech.bull.1985.2018-0843http://dx.doi.org/10.13560/j.cnki.biotech.bull.1985.2018-0843.
马国刚. 有机溶剂提取运城盐湖嗜盐古菌中类胡萝卜素工艺条件优化研究 [J]. 农产品加工, 2021 (20): 33-36. DOI: 10.16693/j.cnki.1671-9646(X).2021.10.045http://dx.doi.org/10.16693/j.cnki.1671-9646(X).2021.10.045.
侯靖,吕布,崔恒林.两株嗜盐古菌所产C50类胡萝卜素的鉴定及抗氧化活性[J].中国食品学报, 2019, 19(10):243-250. DOI:10.16429/j.1009-7848.2019.10.030http://dx.doi.org/10.16429/j.1009-7848.2019.10.030.
解伟. 古菌类胡萝卜素对水产动物抗氧化作用和机制研究[D].天津:天津科技大学, 2024. DOI:10.27359/d.cnki.gtqgu.2022.000028http://dx.doi.org/10.27359/d.cnki.gtqgu.2022.000028.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构