浏览全部资源
扫码关注微信
1.山西大学光电研究所量子光学与量子光学器件国家重点实验室,光电研究所,山西 太原 030006
2.山西大学极限光学协同创新中心,山西 太原 030006
3.量子物质协同创新中心,北京 100871
4.北京大学物理学院人工微结构与介观物理国家重点实验室,北京 100871
5.上海科技大学,上海 200000
6.辽宁材料实验室,辽宁 沈阳 110000
[ "韩拯,男,山西大学光电研究所教授、博士生导师;韩拯以范德华层状功能材料为材料基础,堆叠、构建新架构,展示了多种具有新型复合调控功能的原型介观器件、揭示了多个电场调控介观体系物理性能的机理。近年来在二维磁性材料、新型结构场效应晶体管、二维电子气低温强磁场下的电输运、基于量子效应的新概念半导体等方面在Science、Nature Communications、Nature Nanotechnology等杂志发表多篇论文;先后入选国家海外青年人才计划(2015)、国家级领军人才支持计划(2020)。曾获山西青年五四奖章、“MIT科技评论”中国区35岁以下创新35人、山西省五一劳动奖章。" ]
[ "叶堉,男,北京大学长聘副教授;博士生导师;担任Frontiers of Physics, Journal of Semiconductors, InfoMat等学术期刊青年编委;目前主要从事二维材料及其异质结构的物性研究;主持包括科技部重点专项研发项目、国家基金原创项目、北京市杰出青年基金等;在Science, Nature子刊,PRX/PRL, JACS等期刊发表论文100余篇,获得国家发明专利6项;曾获国家高层次海外人才青年项目。Email: ye_yu@pku.edu.cn" ]
[ "刘健鹏,男,上海科技大学长聘副教授、研究员、博士生导师。刘健鹏的研究方向为理论和计算凝聚态物理学,具体包括:摩尔二维超晶格和异质结体系的非平庸拓扑性质和强关联效应、声子和电声耦合效应、输运和光学性质等方面的理论研究,以及关联金属、磁性拓扑材料等体系的理论研究和第一性原理计算研究等等。刘健鹏在Nature、 Science、 Nature Nanotech.、Nat. Rev. Phys. PRL/PRX、Nat. Commun.等期刊发表论文50余篇。刘健鹏入选中组部国家级青年人才计划,并主持、参与基金委面上项目、科技部重点研发计划等多个科研项目。Email: liujp@shanghaitech.edu.cn" ]
纸质出版日期:2023-12-15,
收稿日期:2023-10-17,
修回日期:2023-11-10,
扫 描 看 全 文
韩拯,叶堉,刘健鹏.量子超晶格:堆叠相互作用的协同效应[J].新兴科学和技术趋势,2023,2(4):360-366.
HAN Zheng,YE Yu,LIU Jianpeng.Quantum superlattice: synergistic effects of interactions in stacked 2D materials[J].Emerging Science and Technology,2023,2(4):360-366.
韩拯,叶堉,刘健鹏.量子超晶格:堆叠相互作用的协同效应[J].新兴科学和技术趋势,2023,2(4):360-366. DOI: 10.12405/j.issn.2097-1486.2023.04.003.
HAN Zheng,YE Yu,LIU Jianpeng.Quantum superlattice: synergistic effects of interactions in stacked 2D materials[J].Emerging Science and Technology,2023,2(4):360-366. DOI: 10.12405/j.issn.2097-1486.2023.04.003.
电子间库伦相互作用在凝聚态物理中起着至关重要的作用。当电子之间相互作用占据主导时,例如磁性、关联绝缘体等物态相变将会发生。二维电子气,尤其是莫尔(moiré)超晶格二维异质系统的电子关联效应近年来受到广泛关注,出现了一系列新颖的实验和理论结果。本文主要围绕一个比较特殊的物理模型:双层关联二维电子气之间的相互作用与协同效应,介绍其近期的实验与理论进展。
e-e Coulomb interaction plays an essential role in condensed matter physics. When interaction energy between electrons is dominating over kinetic energy, interesting quantum phases such as magnetism and correlated insulator can emerge. Recently, such e-e correlation effects in two-dimensional (2D) electronic systems, especially their twisted moiré superlattices, have been a cutting-edge topic. This paper introduces briefly the latest theoretical and experimental progresses based on a particular model: synergetic interplay between two layers of 2D interacting electronic system, and the emerging phenomena.
库伦相互作用电子关联二维异质结莫尔超晶格协同效应
Coulomb interactionstrongly correlated systemtwo-dimensional heterostructuresmoiré superlatticesynergetic interplay
NOVOSELOV K, GEIM A, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. DOI:10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896.
GEIM A, NOVOSELOV K. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183. DOI:10.1038/nmat1849http://dx.doi.org/10.1038/nmat1849.
DONG B, YANG T, HAN Z. Flattening is flattering: The revolutionizing 2D electronic systems[J]. Chinese Physics B, 2020, 29(9): 097307. DOI:10.1088/1674-1056/aba605http://dx.doi.org/10.1088/1674-1056/aba605.
DEAN C, YOUNG A F, MERIC J, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(8): 722. DOI:10.1038/nnano.2010.172http://dx.doi.org/10.1038/nnano.2010.172.
BOLOTIN K I, SIKES K, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351. DOI:10.1016/j.ssc.2008.02.024http://dx.doi.org/10.1016/j.ssc.2008.02.024.
ELIAS D C, GORBACHEV R V, MAYOROV A S, et al. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nature Physics, 2011, 7(9): 701. DOI:10.1038/nphys2049http://dx.doi.org/10.1038/nphys2049.
BAO W, VELASCO J, ZHANG F, et al. Evidence for a Spontaneous Gapped State in Ultraclean Bilayer Graphene[J]. Proceedings of the National Academy of Sciences, 2012, 109(27): 10802. DOI:10.1073/pnas.1205978109http://dx.doi.org/10.1073/pnas.1205978109.
BISTRITZER R, MACDONALD A H. Moire bands in twisted double-layer graphene[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12233. DOI: 10.1073/pnas.1108174108http://dx.doi.org/10.1073/pnas.1108174108.
CAO Y, LUO J Y, FATEMI V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene[J]. Physical Review Letter, 2016, 117(11): 116804. DOI:10.1103/PhysRevLett.117.116804http://dx.doi.org/10.1103/PhysRevLett.117.116804.
CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43. DOI:10.1038/nature26160http://dx.doi.org/10.1038/nature26160.
SHARPE A L, FOX E J, BARNARD A W, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene[J]. Science, 2019, 365(6453): 605. DOI:10.1126/science.aaw378http://dx.doi.org/10.1126/science.aaw378.
LIU J, DAI X. Orbital magnetic states in moiré graphene systems[J]. Nature Review Physics, 2021, 3(5): 367. DOI:10.1038/s42254-021-00297-3http://dx.doi.org/10.1038/s42254-021-00297-3.
SERLIN M, TSCHIRHART C L, POLSHYN H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure[J]. Science, 2019, 367(6480): 900. DOI:10.1126/science.aay5533http://dx.doi.org/10.1126/science.aay5533.
LI T, JIANG S, SHEN B, et al. Quantum anomalous Hall effect from intertwined moiré bands[J]. Nature, 2021 600(7890): 641. DOI:10.1038/s41586-021-04171-1http://dx.doi.org/10.1038/s41586-021-04171-1.
XU F, SUN Z, JIA T, et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2[J]. Physical Review X, 2023, 13(3): 031037. DOI:10.1103/PhysRevX.13.031037http://dx.doi.org/10.1103/PhysRevX.13.031037.
LU Z, HAN T, YAO Y, et al., Fractional quantum anomalous Hall effect in multilayer graphene[J]. Nature, 2024, 626(8000): 759. DOI:10.1038/s41586-023-07010-7http://dx.doi.org/10.1038/s41586-023-07010-7.
SHEVCHENKO E V, TALAPIN D V, KOTOV N A, et al. Structural diversity in binary nanoparticle superlattices[J]. Nature, 2006, 439(7072): 55. DOI:10.1038/nature04414http://dx.doi.org/10.1038/nature04414.
LI Y, DIETRICH S, FORSYTHE C, et al. Anisotropic band flattening in graphene with one-dimensional superlattices[J]. Nature Nanotechnology, 2021, 16(5): 525. DOI:10.1038/s41565-021-00849-9http://dx.doi.org/10.1038/s41565-021-00849-9.
SHAYEGAN M. Wigner crystals in flat band 2D electron systems[J]. Nature Reviews Physics, 2022, 4(4): 212. DOI:10.1038/s42254-022-00444-4http://dx.doi.org/10.1038/s42254-022-00444-4.
WANG Y, GAO X, YANG N, et al. Quantum Hall phase in graphene engineered by interfacial charge coupling[J]. Nature Nanotechnology, 2022, 17(12): 1272. DOI:10.1038/s41565-022-01248-4http://dx.doi.org/10.1038/s41565-022-01248-4.
YANG K, GAO X, WANG Y, et al. Unconventional correlated insulator in CrOCl-interfaced Bernal bilayer graphene[J]. Nature Communications, 2023, 14(1): 2136. DOI:10.1038/s41467-023-37769-2http://dx.doi.org/10.1038/s41467-023-37769-2.
SHAO Y, DAI X. Electrical breakdown of excitonic insulator [DB/OL]. arXiv:2302.07543. DOI:10.48550/arXiv.2302.07543http://dx.doi.org/10.48550/arXiv.2302.07543.
LU X, ZHANG S, WANG Y, et al. Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures[J]. Nature Communications, 2023, 14(1): 5550. DOI:10.1038/s41467-023-41293-8http://dx.doi.org/10.1038/s41467-023-41293-8
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构