内蒙古大学化学化工学院,特色药用资源糖化学研究中心,呼和浩特 010021
[ "张勇民(", "ZHANG Yongmin),内蒙古自治区呼和浩特市人,法国籍,法国国家药学科学院院士,法国国家科学研究中心(CNRS)一级主任研究员,法国索邦大学(原巴黎第六大学)博士生导师,全法中国科技工作者协会副理事长。2019年3月受聘内蒙古大学“骏马计划”A1岗到学校工作,牵头筹建特色药用资源糖化学研究中心,主要围绕自治区特色药用资源多(寡)糖有效成分分离与功能鉴定、糖基化修饰富勒烯的化学和生物学特性开展基础与应用基础研究。yongmin.zhang@upmc.fr" ]
纸质出版日期:2023-09-15,
收稿日期:2023-07-12,
修回日期:2023-08-10,
扫 描 看 全 文
张勇民,吕智敏,刘鸿宇.结核病疫苗的研究现状与展望[J].新兴科学和技术趋势,2023,2(3):229-240.
ZHANG Yongmin,LÜ Zhimin,LIU Hongyu.Research status and prospect of tuberculosis vaccine[J].Emerging Science and Technology,2023,2(3):229-240.
张勇民,吕智敏,刘鸿宇.结核病疫苗的研究现状与展望[J].新兴科学和技术趋势,2023,2(3):229-240. DOI: 10.12405/j.issn.2097-1486.2023.03.001.
ZHANG Yongmin,LÜ Zhimin,LIU Hongyu.Research status and prospect of tuberculosis vaccine[J].Emerging Science and Technology,2023,2(3):229-240. DOI: 10.12405/j.issn.2097-1486.2023.03.001.
由结核分支杆菌(MTB)引起的结核病(TB)作为全球流行的传染病,自发现至今唯一获得许可的预防性疫苗——卡介苗(BCG)对成人免疫效果有限且无法建立长期免疫,同时传统一、二线治疗药物受到广泛耐药性和多重耐药性的限制使其疗效堪忧。面对这种状况,世界卫生组织(WHO)制定了到2030年结束结核病流行的《终结结核病战略》,世界各国科学家们为加快这一进程研发了各种有效的结核病疫苗。本综述针对结核病现状,整理了目前结核病疫苗的研发进展。
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is a global epidemic infectious disease. The only licensed preventive vaccine, Bacillus Calmette-Guérin (BCG), has limited immune effects on adults and cannot establish long-term immunity since its discovery.In addition,limited by extensive drug resistance and multi-drug resistance,the efficacy of traditional first and second-line treatment drugs is not so satisfactory. In this situation,the World Health Organization (WHO) has developed a
The End TB Strategy
to end the TB epidemic by the year of 2030,and the world’s scientists have developed various effective TB vaccines to accelerate this process. Based on the current situation of tuberculosis, this review summarizes the research and development progress of the tuberculosis vaccine.
结核病(TB)结核分枝杆菌(MTB)疫苗临床试验
tuberculosis (TB)mycobacterium tuberculosis (MTB)vaccineclinical trials
COLEMAN M, MARTINEZ L, THERON G, et al. Mycobacterium tuberculosis transmission in high-incidence settings-new paradigms and insights[J]. Pathogens, 2022, 11(11): 1228. DOI: org/10.3390/pathogens11111228http://dx.doi.org/org/10.3390/pathogens11111228.
KHATUA S, GELTEMEYER A M, GOURISHANKAR A, Tuberculosis: Is the landscape changing?[J]. Pediatric Research, 2017, 81(1): 265-270. DOI: 10.1038/pr.2016.205http://dx.doi.org/10.1038/pr.2016.205.
SUN Yunmei, LIAO Yunli, XIONG Nating, et al. Amino acid profiling as a screening and prognostic biomarker in active tuberculosis patients[J]. Clinica Chimica Acta, 2023, 548: 117523. DOI: org/10.1016/j.cca.2023.117523http://dx.doi.org/org/10.1016/j.cca.2023.117523.
LINHARES L A , PEIXOTO A D S, SOUSA L A C, et al. In vitro bioevaluation and docking study of dihydrosphingosine and ethambutol analogues against sensitive and multi-drug resistant Mycobacterium tuberculosis[J]. European Journal of Medicinal Chemistry, 2023, 258:115579. DOI: 10.1016/j.ejmech.2023.115579http://dx.doi.org/10.1016/j.ejmech.2023.115579.
MALIK M K, DESAI P V, DARKI A, A rare case of miliary tuberculosis presenting with saddlepulmonary embolism[J]. Respiratory Medicine Case Reports, 2023, 45: 101915. DOI: 10.1016/j.rmcr.2023.101915http://dx.doi.org/10.1016/j.rmcr.2023.101915.
DANWANG C, BIGNA J J, AWANA A P, Global epidemiology of venous thromboembolism in people with active tuberculosis: a systematic review and meta-analysis[J]. Journal of Thrombosis and Thrombolysis, 2021, 51(2): 502-512. DOI: 10.1007/s11239-020-02211-7http://dx.doi.org/10.1007/s11239-020-02211-7.
SOEDARSONO S, MERTANIASIH N M, KUSMIATI T, et al. Characteristics of previous tuberculosis treatment history in patients with treatment failure and the impact on acquired drug-resistant tuberculosis[J]. Antibiotics, 2023, 12(3): 598. DOI: 10.3390/antibiotics12030598http://dx.doi.org/10.3390/antibiotics12030598.
MAIER C, CHESOV D, SCHAUB D, et al. Long-term treatment outcomes in patients with multidrug-resistant tuberculosis[J]. Clinical Microbiology and Infection, 2023, 29(6): 751-757. DOI: 10.1016/j.cmi.2023.02.013http://dx.doi.org/10.1016/j.cmi.2023.02.013.
Global tuberculosis report 2022[R]. Geneva: World Health Organization, 2022, Licence: CCBY-NC-SA 3.0 IGO. http://apps.who.int/iris.
LOCHT C, Highlights of the 3rd international BCG symposium: 100th anniversary of the first administration of BCG[J]. Microbes and Infection, 2022, 24(8): 105043. DOI: 10.1016/j.micinf.2022.105043http://dx.doi.org/10.1016/j.micinf.2022.105043.
DOW C T, KIDESS L, BCG vaccine-the road not taken[J]. Microorganisms,2022,10(10): 1919, DOI: org/10.3390/ microorganisms10101919http://dx.doi.org/org/10.3390/microorganisms10101919.
DU Jingli, SU Yue, WANG Ruilan, et al. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID- 19[J]. Frontiers in Immunology, 2023, 14: 1118378. DOI: 10.3389/fimmu.2023.1118378http://dx.doi.org/10.3389/fimmu.2023.1118378.
NIEUWENHUIZEN N E, ZYLA J, ZEDIER U, et al. Weaker protection against tuberculosis in BCG-vaccinated male 129 S2 mice compared to females[J]. Vaccine, 2021, 39(50): 7253-7264. DOI: 10.1016/j.vaccine.2021.09.039http://dx.doi.org/10.1016/j.vaccine.2021.09.039.
HILDEBRAND R E, HANSEN C, KINGSTAD-BAKKE B, et al. The immunogenicity and safety of mycobacterium tuberculosis-mosR-Based double deletion strain in mice[J]. Microorganisms, 2023, 11(8): 2105. DOI: 10.3390/microorganisms11082105http://dx.doi.org/10.3390/microorganisms11082105.
JIANG Fan, SUN Tiehui, CHENG Peng, et al. A summary on tuberculosis vaccine development-where to go?[J]. Journal of Personalized Medicine,2023, 13(3): 408. DOI: org/ 10.3390/jpm13030408http://dx.doi.org/org/10.3390/jpm13030408.
WEI Wenping, QIAO Junjie, JIANG Xiaofang, et al. Dehydroquinate synthase directly binds to streptomycin and regulates susceptibility of mycobacterium bovis to streptomycin in anon-canonical mode, Frontiers in Microbiology[J]. 2022, 13: 818881. DOI: 10.3389/fmicb.2022.818881http://dx.doi.org/10.3389/fmicb.2022.818881.
LEI Qian, ZHAO Yuan, WANG Hao, et al. Simple and sensitive method for the analysis of 14 antituberculosis drugs using liquid chromatography/tandem mass spectrometry in human plasma[J]. Rapid Communications in Mass Spectrometry, 2020, 34(8): e8667. DOI: 10.1002/rcm.8667http://dx.doi.org/10.1002/rcm.8667.
QIN Yongwei, WANG Qinglan, SHI Jiahai, Immune checkpoint modulating T cells and NK cells response toMycobacterium tuberculosis infection[J]. Microbiological Research, 2023, 273: 127393. DOI: 10.1016/j.micres.2023.127393http://dx.doi.org/10.1016/j.micres.2023.127393.
KHAN Z, UALIYEVA D, JAMAL K, et al. Molecular diagnostics and potential therapeutic options for mycobacterium tuberculosis: where we stand[J]. Medicine in Omics, 2023, 8: 100022. DOI: org/10.1016/j.meomic.2023.100022http://dx.doi.org/org/10.1016/j.meomic.2023.100022.
An investment case for new tuberculosis vaccines[R]. Geneva: World Health Organization, 2022, Licence: CC BY-NC-SA 3.0 IGO. http://apps.who.int/iris.
GINSBERJ A M, What’s new in tuberculosis vaccines?[J]. Bulletin of the World Health Organization, 2002, 80(6): 483. DOI: 10.1590/S0042-96862002000600014http://dx.doi.org/10.1590/S0042-96862002000600014.
SARAMAGO S, MAGALHAEA J, PINHEIRO M, Tuberculosis vaccines: an update of recent andongoing clinical trials[J]. Applied Sciences, 2021, 11(19): 9250. DOI: 10.3390/app11199250http://dx.doi.org/10.3390/app11199250.
ROMANO M, SQUEGLIA F, KRAMARAKA E, et al. A Structural View at Vaccine Development against M. tuberculosis[J]. Cells, 2023, 12(2): 317. DOI: 10.3390/cells12020317http://dx.doi.org/10.3390/cells12020317.
ZHUANG Li, YE Zhaoyang, LI Linsheng, et al. Next-Generation TB Vaccines: progress, challenges, and prospects[J]. Vaccines, 2023, 11(8): 1304, DOI: 10.3390/vaccines11081304http://dx.doi.org/10.3390/vaccines11081304.
KASHANGURA R, JULLIEN S, GARNER P, et al. MVA85A vaccine to enhance BCG for preventing tuberculosis[J]. Cochrane Database of Systematic Reviews, 2019, 4(4): CD012915. DOI: 10.1002/14651858.cd012915.pub2http://dx.doi.org/10.1002/14651858.cd012915.pub2.
THOMAS Z R M, SATTI I, MARSHALL J L, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: a phase I randomised controlled trial[J]. PLoS Medicine, 2019, 16(4): e1002790. DOI: 10.1371/journal.pmed.1002790http://dx.doi.org/10.1371/journal.pmed.1002790.
TAMERIS M D, HATHERILL M, LANDRY B S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial[J]. The Lancet, 2013, 381(9871): 1021-1028. DOI: 10.1016/S0140-6736(13)60177-4http://dx.doi.org/10.1016/S0140-6736(13)60177-4.
WATT J , LIU J, Preclinical progress of subunit and live attenuated Mycobacterium tuberculosis vaccines: a review following the first in human efficacy trial[J]. Pharmaceutics, 2020, 12(9): 848. DOI: 10.3390/pharmaceutics12090848http://dx.doi.org/10.3390/pharmaceutics12090848.
YANG J I, KIM H K, Fusion of Streptococcus iniae alpha-enolase to IMX313 enhanced antibody titer and survival rate in olive flounder (Paralichthys olivaceus)[J]. Fish and Shellfish Immunology, 2021, 115: 70-74. DOI:10.1016/j.fsi.2021.05.025http://dx.doi.org/10.1016/j.fsi.2021.05.025.
MINHINNICK A, SATTI I, HARRIS S, et al. A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults[J]. Vaccine, 2016, 34(11): 1412-1421. DOI:10.1016/j.vaccine.2016.01.062http://dx.doi.org/10.1016/j.vaccine.2016.01.062.
TRINCHIERI G, Interleukin- 12 and the regulation of innate resistance and adaptive immunity[J]. Nature Reviews Immunology, 2003, 3(2): 133-146. DOI:10.1038/nri1001http://dx.doi.org/10.1038/nri1001.
ELIAGA M L, LI S S, KOCHAR N K, et al. Safety and tolerability of HIV- 1 multiantigen pDNA vaccine given with IL- 12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV Gag vaccine in healthy volunteers in a randomized, controlled clinical trial[J]. PLoS One, 2018, 13(9): e0202753. DOI: 10.1371/journal.pone.0202753http://dx.doi.org/10.1371/journal.pone.0202753.
MORELLI M P, DEL MEDICO ZAJAC M P, PELLEGRINI J M, et al. IL- 12 DNA displays efficient adjuvant effects improving immunogenicity of Ag85A in DNA prime/MVA boost immunizations[J]. Frontiers in Cellular and Infection Microbiology, 2020, 20(10): 581812. DOI: 10.3389/fcimb.2020.581812http://dx.doi.org/10.3389/fcimb.2020.581812.
WILKIE M, SATTI I, MINHINNICK A, et al. A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime-MVA85A boost in healthy UK adults[J]. Vaccine, 2020, 38(4) 779-789. DOI: 10.1016/j.vaccine.2019.10.102http://dx.doi.org/10.1016/j.vaccine.2019.10.102.
STOSMAN K, SIVAK K, ALEKSANDROV A, et al. Preclinical safety evaluation: acute and repeated-dose toxicity of a new intranasal recombinant vector vaccine TB/FLU-04L against tuberculosis[J]. Drug Research, 2022, 72(4): 215-219. DOI: 10.1055/a-1771-5985http://dx.doi.org/10.1055/a-1771-5985.
SHURYGINA A P, ZABOLOTNYKH N, VINOGRADOVA T, et al. Preclinical evaluation of TB/FLU-04L-an intranasal influenza vector-based boost vaccine against tuberculosis[J]. International Journal of Molecular Sciences, 2023, 24(8): 7439. DOI: 10.3390/ijms24087439http://dx.doi.org/10.3390/ijms24087439.
HOLMGREN J, CZERKINSKY C, Mucosal immunity and vaccines[J]. Nature Medicine, 2005, 11(4): S45-53. DOI: 10.1038/nm1213http://dx.doi.org/10.1038/nm1213.
STOSMAN K I, ALEKSANDROV A G, SIVAK K V, et al. Evaluation of the immunotoxicity and allergenicity of a new intranasal influenza vector vaccine against tuberculosis carrying TB10.4 and HspX antigens[J]. Iranian Journal of Basic Medical Sciences, 2023, 26: 558-563. DOI: 10.22038/ijbms.2023.68440.14936http://dx.doi.org/10.22038/ijbms.2023.68440.14936.
DAMJANOVIC D, KHERA A, AFKHAMI S, et al. Age at Mycobacterium bovis BCG priming has limited impact on anti-tuberculosis immunity boosted by respiratory mucosal AdHu5Ag85A immunization in a murine model[J]. PLoS ONE, 2015, 10(6): e0131175. DOI: 10.1371/journal.pone.0131175http://dx.doi.org/10.1371/journal.pone.0131175.
JEYANATHAN M, SHAO Zhongqi, YU Xuefeng, et al. AdHu5Ag85A respiratory mucosal boost immunization enhances protection against pulmonary tuberculosis in BCG-primed non-human primates[J]. PLoS ONE, 2015, 10(8): e0135009. DOI: 10.1371/journal.pone.0135009http://dx.doi.org/10.1371/journal.pone.0135009.
JEYANATHAN M, FRITZ D K, AFKHAMI S, et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans[J]. The Journal of Clinical Investigation, 2022, 7(3): e155655. DOI: 10.1172/jci.insight.155655http://dx.doi.org/10.1172/jci.insight.155655.
HARRISON C, Innovators hit by ruling in dispute over cholesterol antibody patent[J]. NatureBiotechnology, 2023, 41: 1035-1036. DOI: 10.1038/s41587-023-01894-6http://dx.doi.org/10.1038/s41587-023-01894-6.
ULLAH I, BIBI S, HAQ I U, et al. The systematic review and meta-analysis on the immunogenicity and safety of the tuberculosis subunit vaccines M72/AS01(E) and MVA85A[J]. Frontiers in Immunology, 2020, 11: 1806, DOI: 10.3389/fimmu.2020.01806http://dx.doi.org/10.3389/fimmu.2020.01806.
ZHANG Ying, XU Jinchuan,HU Zhidong, et al. Advances in protein subunit vaccines againstTuberculosis[J]. Frontiers in Immunology, 2023, 14: 1238586. DOI: 10.3389/fimmu.2023.1238586http://dx.doi.org/10.3389/fimmu.2023.1238586.
COCCIA M, BURNY W, DEMOITIE M A, et al. Subsequent AS01-adjuvanted vaccinations induce similar transcriptional responses in populations with different disease statuses[J]. PLoS ONE, 2022, 17 (11): e0276505. DOI: 10.1371/journal.pone.0276505http://dx.doi.org/10.1371/journal.pone.0276505.
ALDILA D, CHAVEZ J P, WIJAYA K P, et al. A tuberculosis epidemic model as a proxy for the assessment of the novel M72/AS01E Vaccine[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 120: 107162. DOI: 10.1016/j.cnsns.2023.107162http://dx.doi.org/10.1016/j.cnsns.2023.107162.
THAKUR A, PINTO F E, HANSEN H S, et al. Intrapulmonary (i.pulmon.) pull immunization with the tuberculosis subunit vaccine candidate H56/CAF01 after intramuscular (i.m.) priming elicits a distinct innate myeloid response and activation of antigen-presenting cells than i.m. or i.pulmon. prime immunization alone[J]. Frontiers in Immunology, 2020, 11: 803. DOI: 10.3389/fimmu.2020.00803http://dx.doi.org/10.3389/fimmu.2020.00803.
DESHMUKH S S, MAGCALAS F W, KALBFLEISCH K N, et al. Tuberculosis vaccine candidate: characterization of H4-IC31 formulation and H4 antigen Conformation[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 157: 235-243. DOI: 10.1016/j.jpba.2018.05.048http://dx.doi.org/10.1016/j.jpba.2018.05.048.
VAN DISSEL J T, SOONAWALA D, JOOSTEN S A, et al. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis Infection[J]. Vaccine, 2011, 29(11): 2100-2109. DOI: 10.1016/j.vaccine.2010.12.135http://dx.doi.org/10.1016/j.vaccine.2010.12.135.
WHITE R G, HANEKOM W A, VEKEMANS J, et al. The way forward for tuberculosis Vaccines[J]. The Lancet Respiratory Medicine, 2019, 7(3): 204-206. DOI: 10.1016/S2213-2600(19)30040-2http://dx.doi.org/10.1016/S2213-2600(19)30040-2.
BEKKER L G, DINTWE O, FIORE-GARTLAND A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town[J]. South Africa, EClinicalMedicine, 2020, 21: 100313. DOI: 10.1016/j.eclinm.2020.100313http://dx.doi.org/10.1016/j.eclinm.2020.100313.
JENUM S, TONBY K, RUEEGG C S,et al. A Phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients[J]. Nature Communications, 2021, 12(1): 6774. DOI: 10.1038/s41467-021-27029-6.12 (2021) 6774http://dx.doi.org/10.1038/s41467-021-27029-6.12(2021)6774.
MANSURY D, GHAZVINI K, AMEL JAMEHDAR S, et al. Enhancement of the effect of BCG vaccine against tuberculosis using DDA/TDB liposomes containing a fusion protein of HspX, PPE44, and EsxV[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 370-377. DOI: 10.1080/21691401.2018.1557674http://dx.doi.org/10.1080/21691401.2018.1557674.
MORADI M, VAHEDI F, ABBASSIOUN A, et al. Liposomal delivery system/adjuvant for tuberculosis vaccine[J]. Immunity, Inflammation and Disease, 2023, 11(6): e867. DOI: 10.1002/iid3.867http://dx.doi.org/10.1002/iid3.867.
KENNERKNECHT K, NOSCHKA R, LODDLER F, et al. Toll like-receptor agonist Pam(3)Cys modulates the immunogenicity of liposomes containing the tuberculosis vaccine candidate H56[J]. Medical Microbiology and Immunology, 2020, 209(9): 163-176. DOI: 10.1007/s00430-020-00657-3http://dx.doi.org/10.1007/s00430-020-00657-3.
THAKUR A, INGVARSSON P T, SCHMIDT S T, et al. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder[J]. Vaccine, 2018, 36(23): 3331-3339. DOI: 10.1016/j.vaccine.2018.04.055http://dx.doi.org/10.1016/j.vaccine.2018.04.055.
TKACHUK A P, GUSHCHIN V A, POTAPOV V D, et al. Multi-subunit BCG booster vaccine GamTBvac: assessment of immunogenicity and protective efficacy in murine and guinea pig TB models[J]. PLoS ONE, 2017, 12(4): 1-16. DOI: 10.1371/journal.pone.0176784http://dx.doi.org/10.1371/journal.pone.0176784.
VASINA D V, KLEYMENOV D A, MANUYLOV V A, rt al. First-In-human trials of GamTBvac, a recombinant subunit tuberculosis vaccine candidate: safety and immunogenicity assessment[J]. Vaccines, 2019, 7(4): 166. DOI: 10.3390/vaccines7040166http://dx.doi.org/10.3390/vaccines7040166.
TKACHUK A P, BYKONIA E N, POPOVA LI, et al. Safety and immunogenicity of the GamTBvac, the recombinant subunit tuberculosis vaccine candidate: a phase II, multi-center, double-blind, randomized, placebo-controlled study[J]. Vaccines, 2020, 8(4): 652. DOI: 10.3390/vaccines8040652http://dx.doi.org/10.3390/vaccines8040652.
BALDWIN S L, REESE V A, LARSEN S E, et al. Therapeutic efficacy against Mycobacterium tuberculosis using ID93 and liposomal adjuvant formulations[J]. Frontiers in Microbiology, 2022, 13: 935444. DOI: 10.3389/fmicb.2022.935444http://dx.doi.org/10.3389/fmicb.2022.935444.
LARSEN S E, BALDWIN S L, ORR M T, et al. Enhanced anti-mycobacterium tuberculosis immunity over time with combined drug and immunotherapy treatment[J]. Vaccines, 2018, 6(2):30. DOI: 10.3390/vaccines6020030http://dx.doi.org/10.3390/vaccines6020030.
ARCHER M C, MCCOLLUM J, PRESS C, et al. Stressed stability and protective efficacy of lead lyophilized formulations of ID93+GLA-SE tuberculosis vaccine[J]. Heliyon, 2023, 9(6): e17325. DOI: 10.1016/j.heliyon.2023.e17325http://dx.doi.org/10.1016/j.heliyon.2023.e17325.
SAGAWA Z K, GOMAN C, FREVOL A, et al. Safety and immunogenicity of a thermostable ID93 + GLA-SE tuberculosis vaccine candidate in healthy adults[J]. Nature Communications, 2023, 14(1): 1138. DOI: 10.1038/s41467-023-36789-2http://dx.doi.org/10.1038/s41467-023-36789-2.
Global tuberculosis report 2020[R]. Geneva: World Health Organization, 2020, Licence: CC BY-NC-SA 3.0 IGO. http://apps.who.int/iris.
LU Jinbao, CHEN Baowen, WANG Guozhi, et al. Recombinant tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection[J]. Journal of Microbiology, Immunology and Infection, 2015, 48(6): 597-603. DOI: 10.1016/j.jmii.2014.03.005http://dx.doi.org/10.1016/j.jmii.2014.03.005.
Saramago S, magalhaes J, pinheiro M, Tuberculosis vaccines: an update of recent and ongoing clinical trials[J]. Applied Sciences, 2021, 11(19): 9250. DOI: org/10.3390/app11199250http://dx.doi.org/org/10.3390/app11199250.
PRABOWO S A, PAINTER H, ZELMER A, et al. RUTI vaccination enhances inhibition of Mycobacterial growth ex vivo and induces a shift of monocyte phenotype in mice[J]. Frontiers in Immunology, 2019, 10: 894. DOI: 10.3389/fimmu.2019.00894http://dx.doi.org/10.3389/fimmu.2019.00894.
ATMAKURI K, PENN-NICHOLSON A, TANNER R, et al. Meeting report: 5th Global Forum on TB Vaccines, 20-23 February 2018, New Delhi India[J]. Tuberculosis, 2018, 113: 55-64. DOI: 10.1016/j.tube.2018.08.013http://dx.doi.org/10.1016/j.tube.2018.08.013.
VILAPLANA C, GIL O, CACERES N, et al. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis[J]. PLoS ONE, 2011, 6(5) :e20404. DOI: 10.1371/journal.pone.0020404http://dx.doi.org/10.1371/journal.pone.0020404.
RUSSO G, SGROI G, PARASILITI G A P, et al. Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB[J]. BMC Bioinformatics, 2020, 21(Suppl 17): 458. DOI: 10.1186/s12859-020-03762-5http://dx.doi.org/10.1186/s12859-020-03762-5.
CREYN C F V, LAHEY T, ARBEIT R D, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901[J]. PLoS ONE, 2017, 12(5): e0175215. DOI: 10.1371/journal.pone.0175215http://dx.doi.org/10.1371/journal.pone.0175215.
TIMOTHY L, DOMINICK L, KRYSTAL H, et al. Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis[J]. PLoS ONE, 2016, 11(12) :e0168521. DOI: 10.1371/journal.pone.0168521http://dx.doi.org/10.1371/journal.pone.0168521.
MASONOU T, HOKEY D A, LAHEY T, et al. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: A randomized, placebo-controlled trial[J]. PLoS ONE, 2019, 14(5): e0217091. DOI: 10.1371/journal.pone.0217091http://dx.doi.org/10.1371/journal.pone.0217091.
MUNSERI P, SAID J, AMOUR M,et al. DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial[J]. Vaccine, 2020, 38(46): 7239-7245. DOI: 10.1016/j.vaccine.2020.09.055http://dx.doi.org/10.1016/j.vaccine.2020.09.055.
SAQIB M , KHATRI R, SINGH B , et al. Cell wall fraction of Mycobacterium indicus pranii shows potential Th1 adjuvant activity[J]. International Immunopharmacology, 2019, 70: 408-416. DOI:10.1016/j.intimp.2019.02.049http://dx.doi.org/10.1016/j.intimp.2019.02.049.
NIYAZ A, VIKRAM S, SAURABH R, et al. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into Mycobacterium Evolution[J]. PLoS ONE, 2007, 2(10): e968. DOI: 10.1371/journal.pone.0000968http://dx.doi.org/10.1371/journal.pone.0000968.
ASHISH S, MOHD. S, SHEIKH J A,et al. Mycobacterium indicus pranii protein MIP_05962 induces Th1 cell mediated immune response in mice[J]. International Journal of Medical Microbiology, 2018, 308(8): 1000-1008. DOI: 10.1016/j.ijmm.2018.08.008http://dx.doi.org/10.1016/j.ijmm.2018.08.008.
Boenickse R, Juhasz E, Description of the new species mycobacterium vaccae n. sp[J]. Zentralbl Bakteriol Orig., 1964, 192:133-135.
GONG Wenping, LIANG Yan, WU Xueqiong, The current status, challenges, and future developments of new tuberculosis vaccines[J]. Human Vaccines & Immunotherapeutics, 2018, 14 (7): 1697-1716. DOI: 10.1080/21645515.2018.1458806http://dx.doi.org/10.1080/21645515.2018.1458806.
TSUKAMURA M , MIZUNO S , TSUKAMURA S, Classification of rapidly growing mycobacteria[J]. Japanese Journal of Microbiology, 1968, 12 (2): 151-166. DOI: 10.1111/j.1348-0421.1968.tb00379.xhttp://dx.doi.org/10.1111/j.1348-0421.1968.tb00379.x.
WALLIS R S, JOHNSON J L, Chapter 70-immunotherapy of tuberculosis[J]. Tuberculosis, 2009, 718-726. DOI: 10.1016/b978-1-4160-3988-4.00070-6http://dx.doi.org/10.1016/b978-1-4160-3988-4.00070-6.
BAHR G M, SHAABAN M A, GABRIEL M, et al. Improved immunotherapy for pulmonary tuberculosis with Mycobacterium vaccae[J]. Tubercle, 1990, 71(4): 259-266. DOI: 10.1016/0041-3879(90)90038-Ahttp://dx.doi.org/10.1016/0041-3879(90)90038-A.
XU Lijun, WANG Yanyan, ZHENG Xiaodong, et al. Immunotherapeutical potential of Mycobacterium Vaccae on M. Tuberculosis infection in mice[J]. Cellular & Molecular Immunology, 2009, 6(1): 6. DOI: 10.1038/cmi.2009.9http://dx.doi.org/10.1038/cmi.2009.9.
HUANG Chenyi, HSIEH W Y, Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: A systematic review and meta-analysis[J]. Human Vaccines & Immunotherapeutics, 2017, 13 (9): 1960-1971. DOI: 10.1080/21645515.2017.1335374http://dx.doi.org/10.1080/21645515.2017.1335374.
GONG Wenping, LIANG Yan, LING Yanbo, et al. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes[J]. Military Medical Research, 2020, 7(1): 25. DOI: 10.1186/s40779-020-00258-4http://dx.doi.org/10.1186/s40779-020-00258-4.
SETIABUDIAWAN T P, REURINK R K, HILL P C, et al. Protection against tuberculosis by Bacillus Calmette-Guerin (BCG) vaccination: a historical perspective[J]. Med, 2022, 3(1): 6-24. DOI: 10.1016/j.medj.2021.11.006http://dx.doi.org/10.1016/j.medj.2021.11.006.
NEMES E, GELDENHUYS H, ROZOT V, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination[J]. The New England Journal of Medicine, 2018, 379(2): 138-149. DOI: 10.1056/NEJMoa1714021http://dx.doi.org/10.1056/NEJMoa1714021.
VILLANUEVA P, WADIA U, CRAWFORD N, et al. Revaccination with bacille Calmette-Guérin (BCG) is associated with an increased risk of abscess and lymphadenopathy[J]. Nature Partner Journals Vaccines, 2022, 7(1): 6. DOI: 10.1038/s41541-021-00421-5http://dx.doi.org/10.1038/s41541-021-00421-5.
BANNISTER S, SUDBURY E, VILLANUEVA P, et al. The safety of BCG revaccination: a systematic review[J]. Vaccine, 2021, 39(20): 2736-2745. DOI: 10.1016/j.vaccine.2020.08.016http://dx.doi.org/10.1016/j.vaccine.2020.08.016.
TAMERIS M, MEARNS H, PENN-NICHOLSON A, et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial[J]. Lancet Respiratory Medicine,2019, 7(9): 757-770. DOI: 10.1016/S2213-2600(19)30251-6http://dx.doi.org/10.1016/S2213-2600(19)30251-6.
ROY A, IRENE T, ROMERO B, et al. Evaluation of the immunogenicity and efficacy of BCG and MTBVAC vaccines using a natural transmission model of tuberculosis[J]. Veterunary Research, 2019, 50(1): 82. DOI: 10.1186/s13567-019-0702-7http://dx.doi.org/10.1186/s13567-019-0702-7.
DIAZ C, PEREZ DEL PALACIO J, VALERO-GUILLEN P L, et al. Comparative Metabolomics between Mycobacterium tuberculosis and the MTBVAC vaccine candidate[J]. American Chemical Society Infectious Diseases, 2019, 5(8): 1317-1326. DOI: 10.1021/acsinfecdis.9b00008http://dx.doi.org/10.1021/acsinfecdis.9b00008.
TARANCόN R, MATA E, URANGA S, et al. Therapeutic efficacy of pulmonary live tuberculosis vaccines against established asthma bysubverting local immune environment[J]. EBioMedicine, 2021, 64: 103186. DOI: 10.1016/j.ebiom.2020.103186http://dx.doi.org/10.1016/j.ebiom.2020.103186.
MARTIN C, MARINOVA D, AGUILO N, et al. MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG[J]. Vaccine, 2021, 39(50): 7277-7285. DOI: 10.1016/j.vaccine.2021.06.049http://dx.doi.org/10.1016/j.vaccine.2021.06.049.
THOMAS J S, STEFAN H E K, PAUL H L, et al. Vaccination against tuberculosis with whole-cell mycobacterial vaccines[J]. The Journal of Infectious Diseases, 2016, 214(5): 659-664. DOI:10.1093/infdis/jiw228http://dx.doi.org/10.1093/infdis/jiw228.
COTTON M F, MADHI S A, LUABEYA A K, et al. Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: a randomised, phase 2 non-inferiority double-blind controlled trial[J]. Lancet Infectious Diseases, 2022, 22(10): 1472-1483. DOI: 10.1016/S1473-3099(22)00222-5http://dx.doi.org/10.1016/S1473-3099(22)00222-5.
KAUFMANN S H E, Vaccine development against tuberculosis over the last 140 years: failure as part of success[J]. Frontiers in Microbiology, 2021,12: 750124. DOI: 10.3389/fmicb.2021.750124http://dx.doi.org/10.3389/fmicb.2021.750124.
KAUFMANN S H E, Vaccination Against Tuberculosis: Revamping BCG by molecular genetics guided by immunology[J]. Frontiers in Immunology, 2020, 11: 316. DOI: 10.3389/fimmu.2020.00316http://dx.doi.org/10.3389/fimmu.2020.00316.
NADOLINAKAIA N I, KOTLIAROVA M S, GONCHARENKO A V, Fighting Tuberculosis: In Search of a BCG Replacement[J]. Microorganisms, 2022, 11(1): 51. DOI: 10.3390/microorganisms11010051http://dx.doi.org/10.3390/microorganisms11010051.
DOS SANTOS C C, WALBURG K V, VAN VEEN S, et al. Recombinant BCG-LTAK63 vaccine candidate for tuberculosis induces an inflammatory profile in human macrophages[J]. Vaccines, 2022, 10(6): 831. DOI: 10.3390/vaccines10060831http://dx.doi.org/10.3390/vaccines10060831.
WANG Nan, LIANG Yan, MA Qianqian, et al. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury[J]. Immunity, Inflammation and Disease, 2023, 11(5): e854. DOI: 10.1002/iid3.854http://dx.doi.org/10.1002/iid3.854.
WENG Shufeng, ZHANG Jinyi, MA Huixia, et al. B21 DNA vaccine expressing ag85b, rv2029c, and rv1738 confers a robust therapeutic effect against latent Mycobacterium tuberculosis infection[J]. Frontiers in Immunology, 2022, 13: 1025931. DOI: 10.3389/fimmu.2022.1025931http://dx.doi.org/10.3389/fimmu.2022.1025931.
VORONOV I, MANOLSON M F, Editorial: Flt3 ligand-friend or foe?[J]. Journal of Leukocyte Biology, 2016, 99(3): 401-403. DOI: 10.1189/jlb.3CE0915-445RRhttp://dx.doi.org/10.1189/jlb.3CE0915-445RR.
SARMIENTO M E, ALVAREZ N, CHIN K L, et al. Tuberculosis vaccine candidates based on mycobacterial cell envelope components[J]. Tuberculosis, 2019, 115: 26-41. DOI: 10.1016/j.tube.2019.01.003http://dx.doi.org/10.1016/j.tube.2019.01.003.
XU Xinyue, DONG Baoyu, PENG Lijun, et al. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis[J]. Frontiers in Microbiology, 2022, 13: 1056608. DOI: 10.3389/fmicb.2022.1056608http://dx.doi.org/10.3389/fmicb.2022.1056608.
MORANDI M, SALI M, MANGANELLI R, et al. Exploiting the mycobacterial cell wall to design improved vaccines against tuberculosis[J]. Journal of Infection in Developing Countries, 2013, 7(3): 169-181. DOI: 10.3855/jidc.3114http://dx.doi.org/10.3855/jidc.3114.
WANG Lizhen, FENG Shaojie, AN Lian, et al. Synthetic and immunological studies of Mycobacterial Lipoarabinomannan Oligosaccharides and their protein conjugates[J]. The Journal of Organic Chemistry, 2015, 80(20): 10060-10075. DOI: 10.1021/acs.joc.5b01686http://dx.doi.org/10.1021/acs.joc.5b01686.
HOELEMANN A, STOCKER B L, SEEBERGER P H, Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis[J]. ChemInform, 2007, 38(1): 8071-8088. DOI: 10.1002/chin.200701195http://dx.doi.org/10.1002/chin.200701195.
LI Zhihao, ZHENG Changping, TERRENI M, et al. A Concise synthesis of oligosaccharides derived from Lipoarabinomannan (LAM) with glycosyl donors having a nonparticipating group at C2[J]. European Journal of Organic Chemistry, 2020, 2020(14): 2033-2044. DOI: 10.1002/ejoc.201901915http://dx.doi.org/10.1002/ejoc.201901915.
BUNDLE D R, TAM P H, TRAN H A,et al. Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies[J]. Bioconjugate Chemistry, 2014, 25(4): 685-697. DOI: 10.1021/bc400486whttp://dx.doi.org/10.1021/bc400486w.
GAO Jian, LIAO Guochao, WANG Lizhen, et al. Synthesis of a miniature lipoarabinomannan[J]. Organic Letters, 2014,16(3): 988-991. DOI: 10.1021/ol4036903http://dx.doi.org/10.1021/ol4036903.
WATTANASIRI C, PAHA J, PONPUAK M, et al. Synthesis of synthetic mannan backbone polysaccharides found on the surface of Mycobacterium tuberculosis as a vaccine adjuvant and their immunological properties[J]. Carbohydrate Polymers, 2017, 175(2017): 746-755. DOI: 10.1016/j.carbpol.2017.07.045http://dx.doi.org/10.1016/j.carbpol.2017.07.045.
TEODORA B, SARA T, LUCIANO P, et al. Glycosylation of recombinant antigenic proteins from Mycobacterium tuberculosis: in silico prediction of protein epitopes and ex vivo biological evaluation of new semi-synthetic glycoconjugates[J]. Molecules, 2017, 22(7): 1081. DOI: 10.3390/molecules22071081http://dx.doi.org/10.3390/molecules22071081.
LI Zhihao, BAVARO T, TENGATTINI S, et al. Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis[J]. European Journal of Organic Chemistry, 2020, 204: 112578. DOI: 10.1016/j.ejmech.2020.112578http://dx.doi.org/10.1016/j.ejmech.2020.112578.
江秋虹,张健,程琛舒,等.卡介苗新菌种单细胞克隆株NIFDC 945 SⅢ免疫效应及安全性的初步评价[J].中国生物制品学杂志, 2022, 35(6): 664-667. DOI: 10.13200/j.cnki.cjb.003644http://dx.doi.org/10.13200/j.cnki.cjb.003644.
LEE M H, SEO H, LEE M S, et al. Protection against tuberculosis achieved by dissolving microneedle patches loaded with live Mycobacterium paragordonae in a BCG prime-boost strategy[J]. Frontiers in Immunology, 2023, 14: 1178688. DOI: 10.3389/fimmu.2023.1178688http://dx.doi.org/10.3389/fimmu.2023.1178688.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构