南开大学 物理科学学院, 天津 300071
[ "潘磊,男,天津人,理学博士,南开大学物理学院副教授。2019年毕业于中科院物理研究所,获理论物理博士学位,2019年至2022年于清华大学高等研究院从事博士后研究工作,2022年底入职南开大学物理学院现代物理系,任副教授、博士生导师。主要冷原子物理、凝聚态物理、量子物理及其交叉领域的理论研究。近年来主要开展与超冷原子实验相关的量子多体系统耗散动力学、量子热化与量子疤痕等方面的理论探索。" ]
纸质出版日期:2023-06-25,
收稿日期:2023-04-02,
修回日期:2023-05-10,
扫 描 看 全 文
潘磊.超冷原子中的量子多体疤痕现象[J].新兴科学和技术趋势,2023,2(2):147-177.
PAN Lei.Quantum many-body scars in ultracold atoms[J].Emerging Science and Technology,2023,2(2):147-177.
潘磊.超冷原子中的量子多体疤痕现象[J].新兴科学和技术趋势,2023,2(2):147-177. DOI: 10.12405/j.issn.2097-1486.2023.02.004.
PAN Lei.Quantum many-body scars in ultracold atoms[J].Emerging Science and Technology,2023,2(2):147-177. DOI: 10.12405/j.issn.2097-1486.2023.02.004.
通常对于一个复杂量子多体系统,随着时间的演化将不可避免地趋于热平衡状态,趋于平衡的行为与初始状态的选取无关,这种行为被称之为量子热化。量子热化由所谓的本征态热化假说(Eigenstate Thermalization Hypothesis, ETH)所支配,这一假说在能量本征态的水平上解释了系统的量子热化过程,成为了人们理解多体量子混沌和热化现象的关键。然而ETH终究是一个假设,存在着违反这一假设的特例,例如量子可积系统与多体局域化系统,前者具有无穷多内禀的守恒量,后者存在无序和相互作用诱导的无穷多涌现守恒量,这些守恒量的出现使得本征态违反了ETH,从而让系统避免了被热化的命运。近年来超冷原子实验在Rydberg原子阵列构成的量子模拟器中发现了非热化的动力学行为,实验观察到某些初始状态表现出周期性的非各态历经动力学,这种非可积且没有无序的系统中出现的非热化现象,被认为是一种新的违反ETH的机制—量子多体疤痕。本文将简要综述超冷原子中的量子疤痕现象,讨论这种现象出现的物理机制,并介绍一个简单的准粒子激发图形来简单形象地理解Rydberg原子链中的量子疤痕现象。
Thermalization is the inevitable fate of a general complex quantum many-body system, whose dynamics allow it to fully explore the configuration space regardless of the choice of initial state which is known as quantum ergodicity. The quantum ergodicity is governed by the so-called Eigenstate Thermalization Hypothesis (ETH), which explains the quantum thermalization process of a system at the level of energy eigenstates and serves as a key to understanding quantum many-body chaos and thermalization phenomena. Nevertheless, ETH is a hypothesis after all and there exist counter-examples such as quantum integrable systems and many-body localized systems. The former has an infinite number of intrinsic conserved quantities, while the latter has an infinite number of emergent conserved quantities induced by disorder and interaction. The extensive conserved quantities make the system avoid being thermalized because in principle they can determine each eigenstate in the system. In recent years, non-thermal dynamic behavior has been discovered in ultracold atom quantum simulators with Rydberg atomic arrays. It had been observed that some particular initial states exhibit periodic non-thermal dynamics. This phenomenon occurs in non-integrable and disorderless systems which is considered a new mechanism that violates ETH named as quantum many-body scars. In this paper, we will briefly review the quantum scar phenomenon in ultracold atoms, and discuss the physical mechanism of this phenomenon. We then introduce a simple quasiparticle excitation picture to vividly demonstrate the quantum many-body scarring phenomena in the Rydberg atomic chain.
量子热化本征态热化假说超冷原子量子多体疤痕
quantum thermalizationeigenstate thermalization hypothesisultracold atomsquantum many-body scars
PETHICK C J, SMITH H. Bose–Einstein Condensation in Dilute Gases[M/OL]. 2nd ed. Cambridge: Cambridge University Press, 2008[2023-11-11].DOI:10.1017/CBO9780511802850http://dx.doi.org/10.1017/CBO9780511802850.
ZHAI H. Ultracold Atomic Physics[M/OL]. 1st ed. Cambridge University Press, 2021[2023-11-11].DOI:10.1017/9781108595216http://dx.doi.org/10.1017/9781108595216.
LIN Y J, JIMÉNEZ-GARCÍA K, SPIELMAN I B. Spin-orbit-coupled Bose-Einstein condensates[J/OL]. Nature, 2011, 471(7336): 83-86[2023-11-11].DOI:10.1038/nature09887http://dx.doi.org/10.1038/nature09887.
GOLDMAN N, JUZELIŪNAS G, ÖHBERG P, et al. Light-induced gauge fields for ultracold atoms[J/OL]. Reports on Progress in Physics, 2014, 77(12): 126401[2023-11-11].DOI:10.1088/0034-4885/77/12/126401http://dx.doi.org/10.1088/0034-4885/77/12/126401.
WANG P, YU Z Q, FU Z, et al. Spin-Orbit Coupled Degenerate Fermi Gases[J/OL]. Physical Review Letters, 2012, 109(9): 095301[2023-11-11].DOI:10.1103/PhysRevLett.109.095301http://dx.doi.org/10.1103/PhysRevLett.109.095301.
CHEUK L W, SOMMER A T, HADZIBABIC Z, et al. Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas[J/OL]. Physical Review Letters, 2012, 109(9): 095302[2023-11-11].DOI:10.1103/PhysRevLett.109.095302http://dx.doi.org/10.1103/PhysRevLett.109.095302
ZHAI H. Degenerate quantum gases with spin-orbit coupling: a review[J/OL]. Reports on Progress in Physics, 2015, 78(2): 026001[2023-11-11]. DOI:10.1088/0034-4885/78/2/026001http://dx.doi.org/10.1088/0034-4885/78/2/026001.
LI J R, LEE J, HUANG W, et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates[J/OL]. Nature, 2017, 543(7643): 91-94[2023-11-11]. DOI:10.1038/nature21431http://dx.doi.org/10.1038/nature21431.
KADAU H, SCHMITT M, WENZEL M, et al. Observing the Rosensweig instability of a quantum ferrofluid[J/OL]. Nature, 2016, 530(7589): 194-197[2023-11-11].DOI:10.1038/nature16485http://dx.doi.org/10.1038/nature16485.
CABRERA C R, TANZI L, SANZ J, et al. Quantum liquid droplets in a mixture of Bose-Einstein condensates[J/OL]. Science, 2018, 359(6373): 301-304[2023-11-11]. DOI:10.1126/science.aao5686http://dx.doi.org/10.1126/science.aao5686.
ENOMOTO K, KASA K, KITAGAWA M, et al. Optical Feshbach Resonance Using the Intercombination Transition[J/OL]. Physical Review Letters, 2008, 101(20): 203201[2023-11-11]. DOI:10.1103/PhysRevLett.101.203201http://dx.doi.org/10.1103/PhysRevLett.101.203201.
KÖHLER T, GÓRAL K, JULIENNE P S. Production of cold molecules via magnetically tunable Feshbach resonances[J/OL]. Reviews of Modern Physics, 2006, 78(4): 1311-1361[2023-11-11]. DOI:10.1103/RevModPhys.78.1311http://dx.doi.org/10.1103/RevModPhys.78.1311.
CHIN C, GRIMM R, JULIENNE P, 等. Feshbach resonances in ultracold gases[J/OL]. Reviews of Modern Physics, 2010, 82(2): 1225-1286[2023-11-11]. DOI:10.1103/RevModPhys.82.1225http://dx.doi.org/10.1103/RevModPhys.82.1225.
OLSHANII M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons[J/OL]. Physical Review Letters, 1998, 81(5): 938-941[2023-11-11]. DOI:10.1103/PhysRevLett.81.938http://dx.doi.org/10.1103/PhysRevLett.81.938.
HALLER E, MARK M J, HART R, et al. Confinement-Induced Resonances in Low-Dimensional Quantum Systems[J/OL]. Physical Review Letters, 2010, 104(15): 153203[2023-11-11]. DOI:10.1103/PhysRevLett.104.153203http://dx.doi.org/10.1103/PhysRevLett.104.153203.
KINOSHITA T, WENGER T, WEISS D S. Observation of a One-Dimensional Tonks-Girardeau Gas[J/OL]. Science, 2004, 305(5687): 1125-1128[2023-11-11]. DOI:10.1126/science.1100700http://dx.doi.org/10.1126/science.1100700.
PAREDES B, WIDERA A, MURG V, et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice[J/OL]. Nature, 2004, 429(6989): 277-281[2023-11-11].DOI:10.1038/nature02530http://dx.doi.org/10.1038/nature02530.
REGAL C A, GREINER M, GIORGINI S, et al. Momentum Distribution of a Fermi Gas of Atoms in the BCS-BEC Crossover[J/OL]. Physical Review Letters, 2005, 95(25): 250404[2023-11-11]. DOI:10.1103/PhysRevLett.95.250404http://dx.doi.org/10.1103/PhysRevLett.95.250404.
ZWERGER W. The BCS-BEC Crossover and the Unitary Fermi Gas, Springer.2012:836.ISBN : 978-3-642-21977-1.
HALLER E, GUSTAVSSON M, MARK M J, et al. Realization of an Excited, Strongly Correlated Quantum Gas Phase[J/OL]. Science, 2009, 325(5945): 1224-1227[2023-11-11]. DOI:10.1126/science.1175850http://dx.doi.org/10.1126/science.1175850.
EIGEN C, GLIDDEN J A P, LOPES R, et al. Universal prethermal dynamics of Bose gases quenched to unitarity[J/OL]. Nature, 2018, 563(7730): 221-224[2023-11-11]. DOI:10.1038/s41586-018-0674-1http://dx.doi.org/10.1038/s41586-018-0674-1.
GAO C, SUN M, ZHANG P, et al. Universal Dynamics of a Degenerate Bose Gas Quenched to Unitarity[J/OL]. Physical Review Letters, 2020, 124(4): 040403[2023-11-11]. DOI:10.1103/PhysRevLett.124.040403http://dx.doi.org/10.1103/PhysRevLett.124.040403.
BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J/OL]. Nature, 2017, 551(7682): 579-584[2023-11-11]. DOI:10.1038/nature24622http://dx.doi.org/10.1038/nature24622.
TURNER C J, MICHAILIDIS A A, ABANIN D A, et al. Weak ergodicity breaking from quantum many-body scars[J/OL]. Nature Physics, 2018, 14(7): 745-749[2023-11-11]. DOI:10.1038/s41567-018-0137-5http://dx.doi.org/10.1038/s41567-018-0137-5.
SCHEIE A, SHERMAN N E, DUPONT M, et al. Detection of Kardar–Parisi–Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain[J/OL]. Nature Physics, 2021, 17(6): 726-730[2023-11-11]. DOI:10.1038/s41567-021-01191-6http://dx.doi.org/10.1038/s41567-021-01191-6.
JEPSEN P N, AMATO-GRILL J, DIMITROVA I, et al. Spin transport in a tunable Heisenberg model realized with ultracold atoms[J/OL]. Nature, 2020, 588(7838): 403-407[2023-11-11]. DOI:10.1038/s41586-020-3033-yhttp://dx.doi.org/10.1038/s41586-020-3033-y.
WEI D, RUBIO-ABADAL A, YE B, et al. Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion[J/OL]. Science, 2022, 376(6594): 716-720[2023-11-11]. DOI:10.1126/science.abk2397http://dx.doi.org/10.1126/science.abk2397.
BARONTINI G, LABOUVIE R, STUBENRAUCH F, et al. Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation[J/OL]. Physical Review Letters, 2013, 110(3): 035302[2023-11-11]. DOI:10.1103/PhysRevLett.110.035302http://dx.doi.org/10.1103/PhysRevLett.110.035302.
LABOUVIE R, SANTRA B, HEUN S, et al. Bistability in a Driven-Dissipative Superfluid[J/OL]. Physical Review Letters, 2016, 116(23): 235302[2023-11-11]. DOI:10.1103/PhysRevLett.116.235302http://dx.doi.org/10.1103/PhysRevLett.116.235302.
BOUGANNE R, BOSCH AGUILERA M, GHERMAOUI A, et al. Anomalous decay of coherence in a dissipative many-body system[J/OL]. Nature Physics, 2020, 16(1): 21-25[2023-11-11]. DOI:10.1038/s41567-019-0678-2http://dx.doi.org/10.1038/s41567-019-0678-2.
马上庚. 统计力学[M]. 台北:环华出版事业股份有限公司,1976.
约西亚·威拉德·吉布斯. 统计力学的基本原理[M]. 毛俊雯,译. 汪秉宏,审校.合肥:中国科技大学出版社,2016.
LIOUVILLE J. Sur la Theorie de la Variation des constantes arbitraries, Journal de mathématiques pures et appliquées, 3, 342 (1838).
ARNOLD V I. Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989: 60.ISBN: 978-1-4419-3087-3.DOI:10.1007/978-1-4757-2063-1http://dx.doi.org/10.1007/978-1-4757-2063-1.
JOSÉ J V, SALETAN E J. Classical Dynamics: A Contemporary Approach, Cambridge University Press, Cambridge,1998.ISBN:9780521636360.DOI:10.1017/CBO9780511803772http://dx.doi.org/10.1017/CBO9780511803772.
BUNIMOVICH L A. On the ergodic properties of nowhere dispersing billiards[J/OL]. Communications in Mathematical Physics, 1979, 65(3): 295-312[2023-11-11].DOI:10.1007/BF01197884http://dx.doi.org/10.1007/BF01197884.
KOLMOGOROV A N. On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk. 1954,SSR 98, 527.
ARNOLD V I. Proof of AN Kolmogorov's theorem on the preservation of quasiperodic motions under small perturbations of the Hamiltonian[J/OL]. Russian Mathematical Surveys, 1963, 18(5): 9-36[2023-11-11].DOI:10.1070/RM1963v018n05ABEH004130http://dx.doi.org/10.1070/RM1963v018n05ABEH004130.
MOSER J K. On invariant curves of area-preserving mappings of an anulus[C/OL]. 1962. https://api.semanticscholar.org/CorpusID:115680939https://api.semanticscholar.org/CorpusID:115680939.
CHIRIKOV B V. A universal instability of many-dimensional oscillator systems[J/OL]. Physics Reports, 1979, 52(5): 263-379[2023-11-11].DOI:10.1016/0370-1573(79)90023-1http://dx.doi.org/10.1016/0370-1573(79)90023-1
CASATI G, CHIRIKOV B V, IZRAILEV F M, and Ford J. Stochastic behavior of a quantum pendulum under a periodic perturbation, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics, Vol. 93, Springer, Berlin, Heidelberg, 1979.
LANDAU L D , LIFSHITZ E M. Quantum Mechanics, Non-Relativistic Theory, 3rd ed., Vol. 3,Butterworth-Heinemann, 1981.eBook ISBN: 9781483149127.
STONE A D. Einstein’s Unknown Insight and the Problem of Quantizing Chaos[J/OL]. Physics Today, 2005, 58(8): 37-43[2023-11-11].DOI:10.1063/1.2062917http://dx.doi.org/10.1063/1.2062917.
GUTZWILLER M C. Periodic Orbits and Classical Quantization Conditions[J/OL]. Journal of Mathematical Physics, 1971, 12(3): 343-358[2023-11-11].DOI:10.1063/1.1665596http://dx.doi.org/10.1063/1.1665596.
RUDNICK Z. What is quantum chaos? Notices of the American Mathematical Society, 2008,55(1), 32-34.
WIGNER E P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I[M/OL]//WIGHTMAN A S. The Collected Works of Eugene Paul Wigner. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993: 524-540[2023-11-11].DOI:10.1007/978-3-662-02781-3_35http://dx.doi.org/10.1007/978-3-662-02781-3_35.
WIGNER E P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions II[M/OL]//WIGHTMAN A S. The Collected Works of Eugene Paul Wigner. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993: 541-545[2023-11-11].DOI:10.1007/978-3-662-02781-3_36http://dx.doi.org/10.1007/978-3-662-02781-3_36.
WIGNER E P. On the Distribution of the Roots of Certain Symmetric Matrices[J/OL]. The Annals of Mathematics, 1958, 67(2): 325[2023-11-11].DOI:10.2307/1970008http://dx.doi.org/10.2307/1970008.
DYSON F J. Statistical Theory of the Energy Levels of Complex Systems. I[J/OL]. Journal of Mathematical Physics, 1962, 3(1): 140-156[2023-11-11].DOI:10.1063/1.1703773http://dx.doi.org/10.1063/1.1703773.
BOHIGAS O, GIANNONI M J, SCHMIT C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws[J/OL]. Physical Review Letters, 1984, 52(1): 1-4[2023-11-11]. DOI:10.1103/PhysRevLett.52.1http://dx.doi.org/10.1103/PhysRevLett.52.1.
GUHR T, MÜLLER-GROELING A, WEIDENMÜLLER H A. Random-matrix theories in quantum physics: common concepts[J/OL]. Physics Reports, 1998, 299(4-6): 189-425[2023-11-11].DOI:10.1016/S0370-1573http://dx.doi.org/10.1016/S0370-1573%2897%2900088-4.
ALHASSID Y. The statistical theory of quantum dots[J/OL]. Reviews of Modern Physics, 2000, 72(4): 895-968[2023-11-12]. DOI:10.1103/RevModPhys.72.895http://dx.doi.org/10.1103/RevModPhys.72.895.
MEHTA M L. Random Matrices, Elsevier/Academic Press, Amsterdam, 2004. Hardback.ISBN: 9780120884094.
KRAVTSOV V E. Random matrix theory: Wigner-Dyson statistics and beyond. (Lecture notes of a course given at SISSA (Trieste, Italy))[J/OL]. 2009[2023-11-12].DOI:10.48550/arXiv.0911.0639http://dx.doi.org/10.48550/arXiv.0911.0639.
BRODY T A, FLORES J, FRENCH J B, et al. Random-matrix physics: spectrum and strength fluctuations[J/OL]. Reviews of Modern Physics, 1981, 53(3): 385-479[2023-11-12]. DOI:10.1103/RevModPhys.53.385http://dx.doi.org/10.1103/RevModPhys.53.385.
KOTA V K B. Embedded random matrix ensembles in quantum physics, Lecture Notes Phys,2014: 884 .
SANTOS L F, BORGONOVI F, IZRAILEV F M. Onset of chaos and relaxation in isolated systems of interacting spins: Energy shell approach[J/OL]. Physical Review E, 2012, 85(3): 036209[2023-11-12]. DOI:10.1103/PhysRevE.85.036209http://dx.doi.org/10.1103/PhysRevE.85.036209.
KOTA V K B, SAHU R. Information entropy and number of principal components in shell model transition strength distributions[J/OL]. Physics Letters B, 1998, 429(1-2): 1-6[2023-11-12].DOI:10.1016/S0370-2693(98)00461-4http://dx.doi.org/10.1016/S0370-2693(98)00461-4.
BERRY M V, TABOR M. Level clustering in the regular spectrum[J/OL]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1977, 356(1686): 375-394[2023-11-12]. DOI:10.1098/rspa.1977.0140http://dx.doi.org/10.1098/rspa.1977.0140.
PANDEY A, RAMASWAMY R. Level spacings for harmonic-oscillator systems[J/OL]. Physical Review A, 1991, 43(8): 4237-4243[2023-11-12]. DOI:10.1103/PhysRevA.43.4237http://dx.doi.org/10.1103/PhysRevA.43.4237.
HAAKE F. Quantum Signatures of Chaos Springer, Berlin, 2010.
SHENKER S H, STANFORD D. Black holes and the butterfly effect[J/OL]. Journal of High Energy Physics, 2014, 2014(3): 67[2023-11-12].DOI:10.1007/JHEP03http://dx.doi.org/10.1007/JHEP03%282014%29067.
MALDACENA J, SHENKER S H, STANFORD D. A bound on chaos[J/OL]. Journal of High Energy Physics, 2016, 2016(8): 106[2023-11-12].DOI:10.1007/JHEP08http://dx.doi.org/10.1007/JHEP08%282016%29106.
D'ALESSIO L, KAFRI Y, POLKOVNIKOV A, et al. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[J/OL]. Advances in Physics, 2016, 65(3): 239-362[2023-11-12].DOI:10.1080/00018732.2016.1198134http://dx.doi.org/10.1080/00018732.2016.1198134.
LANDAU L D, LIFSHITZ E M. Statistical Physics, Part 1, 3rd ed., Vol. 5, Butterworth-Heinemann, Boston, 1980.
SANTOS L F, POLKOVNIKOV A, RIGOL M. Weak and strong typicality in quantum systems[J/OL]. Physical Review E, 2012, 86(1): 010102[2023-11-12]. DOI:10.1103/PhysRevE.86.010102http://dx.doi.org/10.1103/PhysRevE.86.010102.
DEUTSCH J M, LI H, SHARMA A. Microscopic origin of thermodynamic entropy in isolated systems[J/OL]. Physical Review E, 2013, 87(4): 042135[2023-11-12]. DOI:10.1103/PhysRevE.87.042135http://dx.doi.org/10.1103/PhysRevE.87.042135.
MIERZEJEWSKI M, PROSEN T, CRIVELLI D, et al. Eigenvalue Statistics of Reduced Density Matrix during Driving and Relaxation[J/OL]. Physical Review Letters, 2013, 110(20): 200602[2023-11-12]. DOI:10.1103/PhysRevLett.110.200602http://dx.doi.org/10.1103/PhysRevLett.110.200602.
KIM H, HUSE D A. Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System[J/OL]. Physical Review Letters, 2013, 111(12): 127205[2023-11-12]. DOI:10.1103/PhysRevLett.111.127205http://dx.doi.org/10.1103/PhysRevLett.111.127205.
KHLEBNIKOV S, KRUCZENSKI M. Locality, entanglement, and thermalization of isolated quantum systems[J/OL]. Physical Review E, 2014, 90(5): 050101[2023-11-12]. DOI:10.1103/PhysRevE.90.050101http://dx.doi.org/10.1103/PhysRevE.90.050101.
BARDARSON J H, POLLMANN F, MOORE J E. Unbounded Growth of Entanglement in Models of Many-Body Localization[J/OL]. Physical Review Letters, 2012, 109(1): 017202[2023-11-12]. DOI:10.1103/PhysRevLett.109.017202http://dx.doi.org/10.1103/PhysRevLett.109.017202.
VOSK R, ALTMAN E. Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point[J/OL]. Physical Review Letters, 2013, 110(6): 067204[2023-11-12]. DOI:10.1103/PhysRevLett.110.067204http://dx.doi.org/10.1103/PhysRevLett.110.067204.
SERBYN M, PAPIĆ Z, ABANIN D A. Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems[J/OL]. Physical Review Letters, 2013, 110(26): 260601[2023-11-12]. DOI:10.1103/PhysRevLett.110.260601http://dx.doi.org/10.1103/PhysRevLett.110.260601.
NANDURI A, KIM H, HUSE D A. Entanglement spreading in a many-body localized system[J/OL]. Physical Review B, 2014, 90(6): 064201[2023-11-12]. DOI:10.1103/PhysRevB.90.064201http://dx.doi.org/10.1103/PhysRevB.90.064201.
PONTE P, PAPIĆ Z, HUVENEERS F, 等. Many-Body Localization in Periodically Driven Systems[J/OL]. Physical Review Letters, 2015, 114(14): 140401[2023-11-12]. DOI:10.1103/PhysRevLett.114.140401http://dx.doi.org/10.1103/PhysRevLett.114.140401.
GARRISON J R, GROVER T. Does a Single Eigenstate Encode the Full Hamiltonian?[J/OL]. Physical Review X, 2018, 8(2): 021026[2023-11-12]. DOI:10.1103/PhysRevX.8.021026http://dx.doi.org/10.1103/PhysRevX.8.021026.
NEUMANN J V. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik[J/OL]. Zeitschrift für Physik, 1929, 57(1-2): 30-70[2023-11-12].DOI:10.1007/BF01339852http://dx.doi.org/10.1007/BF01339852.
RIGOL M, SREDNICKI M. Alternatives to Eigenstate Thermalization[J/OL]. Physical Review Letters, 2012, 108(11): 110601[2023-11-12]. DOI:10.1103/PhysRevLett.108.110601http://dx.doi.org/10.1103/PhysRevLett.108.110601.
DEUTSCH J M. Quantum statistical mechanics in a closed system[J/OL]. Physical Review A, 1991, 43(4): 2046-2049[2023-11-12]. DOI:10.1103/PhysRevA.43.2046http://dx.doi.org/10.1103/PhysRevA.43.2046.
SREDNICKI M. Chaos and quantum thermalization[J/OL]. Physical Review E, 1994, 50(2): 888-901[2023-11-12]. DOI:10.1103/PhysRevE.50.888http://dx.doi.org/10.1103/PhysRevE.50.888.
SREDNICKI M. Thermal fluctuations in quantized chaotic systems[J/OL]. Journal of Physics A: Mathematical and General, 1996, 29(4): L75-L79[2023-11-12]. DOI:10.1088/0305-4470/29/4/003http://dx.doi.org/10.1088/0305-4470/29/4/003.
SREDNICKI M. The approach to thermal equilibrium in quantized chaotic systems[J/OL]. Journal of Physics A: Mathematical and General, 1999, 32(7): 1163-1175[2023-11-12]. DOI:10.1088/0305-4470/32/7/007http://dx.doi.org/10.1088/0305-4470/32/7/007.
RIGOL M, DUNJKO V, OLSHANII M. Thermalization and its mechanism for generic isolated quantum systems[J/OL]. Nature, 2008, 452(7189): 854-858[2023-11-12].DOI:10.1038/nature06838http://dx.doi.org/10.1038/nature06838.
KHATAMI E, PUPILLO G, SREDNICKI M, et al. Fluctuation-Dissipation Theorem in an Isolated System of Quantum Dipolar Bosons after a Quench[J/OL]. Physical Review Letters, 2013, 111(5): 050403[2023-11-12]. DOI:10.1103/PhysRevLett.111.050403http://dx.doi.org/10.1103/PhysRevLett.111.050403.
RIGOL M. Breakdown of Thermalization in Finite One-Dimensional Systems[J/OL]. Physical Review Letters, 2009, 103(10): 100403[2023-11-12]. DOI:10.1103/PhysRevLett.103.100403http://dx.doi.org/10.1103/PhysRevLett.103.100403.
RIGOL M. Quantum quenches and thermalization in one-dimensional fermionic systems[J/OL]. Physical Review A, 2009, 80(5): 053607[2023-11-12].DOI:10.1103/PhysRevA.80.053607http://dx.doi.org/10.1103/PhysRevA.80.053607.
STEINIGEWEG R, HERBRYCH J, PRELOVŠEK P. Eigenstate thermalization within isolated spin-chain systems[J/OL]. Physical Review E, 2013, 87(1): 012118[2023-11-12]. DOI:10.1103/PhysRevE.87.012118http://dx.doi.org/10.1103/PhysRevE.87.012118.
BEUGELING W, MOESSNER R, HAQUE M. Finite-size scaling of eigenstate thermalization[J/OL]. Physical Review E, 2014, 89(4): 042112[2023-11-12]. DOI:10.1103/PhysRevE.89.042112http://dx.doi.org/10.1103/PhysRevE.89.042112.
KIM H, IKEDA T N, HUSE D A. Testing whether all eigenstates obey the eigenstate thermalization hypothesis[J/OL]. Physical Review E, 2014, 90(5): 052105[2023-11-12]. DOI:10.1103/PhysRevE.90.052105http://dx.doi.org/10.1103/PhysRevE.90.052105.
STEINIGEWEG R, KHODJA A, NIEMEYER H, et al. Pushing the Limits of the Eigenstate Thermalization Hypothesis towards Mesoscopic Quantum Systems[J/OL]. Physical Review Letters, 2014, 112(13): 130403[2023-11-12]. DOI:10.1103/PhysRevLett.112.130403http://dx.doi.org/10.1103/PhysRevLett.112.130403.
KHODJA A, STEINIGEWEG R, GEMMER J. Relevance of the eigenstate thermalization hypothesis for thermal relaxation[J/OL]. Physical Review E, 2015, 91(1): 012120[2023-11-12]. DOI:10.1103/PhysRevE.91.012120http://dx.doi.org/10.1103/PhysRevE.91.012120.
BEUGELING W, MOESSNER R, HAQUE M. Off-diagonal matrix elements of local operators in many-body quantum systems[J/OL]. Physical Review E, 2015, 91(1): 012144[2023-11-12]. DOI:10.1103/PhysRevE.91.012144http://dx.doi.org/10.1103/PhysRevE.91.012144.
RIGOL M. Quantum quenches and thermalization in one-dimensional fermionic systems[J/OL]. Physical Review A, 2009, 80(5): 053607[2023-11-12]. DOI:10.1103/PhysRevA.80.053607http://dx.doi.org/10.1103/PhysRevA.80.053607.
NEUENHAHN C, MARQUARDT F. Thermalization of interacting fermions and delocalization in Fock space[J/OL]. Physical Review E, 2012, 85(6): 060101[2023-11-12]. DOI:10.1103/PhysRevE.85.060101http://dx.doi.org/10.1103/PhysRevE.85.060101.
KHATAMI E, RIGOL M, RELAÑO A, et al. Quantum quenches in disordered systems: Approach to thermal equilibrium without a typical relaxation time[J/OL]. Physical Review E, 2012, 85(5): 050102[2023-11-12]. DOI:10.1103/PhysRevE.85.050102http://dx.doi.org/10.1103/PhysRevE.85.050102.
GENWAY S, HO A F, LEE D K K. Thermalization of local observables in small Hubbard lattices[J/OL]. Physical Review A, 2012, 86(2): 023609[2023-11-12]. DOI:10.1103/PhysRevA.86.023609http://dx.doi.org/10.1103/PhysRevA.86.023609.
BIROLI G, KOLLATH C, LÄUCHLI A M. Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems[J/OL]. Physical Review Letters, 2010, 105(25): 250401[2023-11-12]. DOI:10.1103/PhysRevLett.105.250401http://dx.doi.org/10.1103/PhysRevLett.105.250401.
ROUX G. Finite-size effects in global quantum quenches: Examples from free bosons in an harmonic trap and the one-dimensional Bose-Hubbard model[J/OL]. Physical Review A, 2010, 81(5): 053604[2023-11-12]. DOI:10.1103/PhysRevA.81.053604http://dx.doi.org/10.1103/PhysRevA.81.053604.
SORG S, VIDMAR L, POLLET L, et al. Relaxation and thermalization in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum quench from the atomic limit[J/OL]. Physical Review A, 2014, 90(3): 033606[2023-11-12]. DOI:10.1103/PhysRevA.90.033606http://dx.doi.org/10.1103/PhysRevA.90.033606.
MONDAINI R, FRATUS K R, SREDNICKI M, et al. Eigenstate thermalization in the two-dimensional transverse field Ising model[J/OL]. Physical Review E, 2016, 93(3): 032104[2023-11-12]. DOI:10.1103/PhysRevE.93.032104http://dx.doi.org/10.1103/PhysRevE.93.032104.
ANDERSON P W. Absence of Diffusion in Certain Random Lattices[J/OL]. Physical Review, 1958, 109(5): 1492-1505[2023-11-12]. DOI:10.1103/PhysRev.109.1492http://dx.doi.org/10.1103/PhysRev.109.1492.
GORNYI I V, MIRLIN A D, POLYAKOV D G. Interacting Electrons in Disordered Wires: Anderson Localization and Low- T Transport[J/OL]. Physical Review Letters, 2005, 95(20): 206603[2023-11-12]. DOI:10.1103/PhysRevLett.95.206603http://dx.doi.org/10.1103/PhysRevLett.95.206603.
BASKO D M, ALEINER I L, ALTSHULER B L. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states[J/OL]. Annals of Physics, 2006, 321(5): 1126-1205[2023-11-12].DOI:10.1016/j.aop.2005.11.014http://dx.doi.org/10.1016/j.aop.2005.11.014.
ABANIN D A, ALTMAN E, BLOCH I, et al. Colloquium: Many-body localization, thermalization, and entanglement[J/OL]. Reviews of Modern Physics, 2019, 91(2): 021001[2023-11-12]. DOI:10.1103/RevModPhys.91.021001http://dx.doi.org/10.1103/RevModPhys.91.021001.
SERBYN M, PAPIĆ Z, ABANIN D A. Local Conservation Laws and the Structure of the Many-Body Localized States[J/OL]. Physical Review Letters, 2013, 111(12): 127201[2023-11-12]. DOI:10.1103/PhysRevLett.111.127201http://dx.doi.org/10.1103/PhysRevLett.111.127201.
HUSE D A, NANDKISHORE R, OGANESYAN V. Phenomenology of fully many-body-localized systems[J/OL]. Physical Review B, 2014, 90(17): 174202[2023-11-12]. DOI:10.1103/PhysRevB.90.174202http://dx.doi.org/10.1103/PhysRevB.90.174202.
LARKIN A I, OVCHINNIKOV Y N. Quasiclassical Method in the Theory of Superconductivity[J/OL]. Journal of Experimental and Theoretical Physics, 1969. https://api.semanticscholar.org/CorpusID:117608877https://api.semanticscholar.org/CorpusID:117608877.
ROBERTS D A, YOSHIDA B. Chaos and complexity by design[J/OL]. Journal of High Energy Physics, 2017, 2017(4): 121[2023-11-12]. http://link.springer.com/10.1007/JHEP04(2017)121http://link.springer.com/10.1007/JHEP04(2017)121.
PARKER D E, CAO X, AVDOSHKIN A, et al. A Universal Operator Growth Hypothesis[J/OL]. Physical Review X, 2019, 9(4): 041017[2023-11-12]. DOI:10.1103/PhysRevX.9.041017http://dx.doi.org/10.1103/PhysRevX.9.041017.
TURNER C J, MICHAILIDIS A A, ABANIN D A, et al. Weak ergodicity breaking from quantum many-body scars[J/OL]. Nature Physics, 2018, 14(7): 745-749[2023-11-12].DOI:10.1038/s41567-018-0137-5http://dx.doi.org/10.1038/s41567-018-0137-5.
TURNER C J, MICHAILIDIS A A, ABANIN D A, et al. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations[J/OL]. Physical Review B, 2018, 98(15): 155134[2023-11-12]. DOI:10.1103/PhysRevB.98.155134http://dx.doi.org/10.1103/PhysRevB.98.155134.
BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J/OL]. Nature, 2017, 551(7682): 579-584[2023-11-12]. DOI:10.1038/nature24622http://dx.doi.org/10.1038/nature24622.
HELLER E J. Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits[J/OL]. Physical Review Letters, 1984, 53(16): 1515-1518[2023-11-12]. DOI:10.1103/PhysRevLett.53.1515http://dx.doi.org/10.1103/PhysRevLett.53.1515.
PAN L, ZHAI H. Composite spin approach to the blockade effect in Rydberg atom arrays[J/OL]. Physical Review Research, 2022, 4(3): L032037[2023-11-12]. DOI:10.1103/PhysRevResearch.4.L032037http://dx.doi.org/10.1103/PhysRevResearch.4.L032037.
SACHDEV S, SENGUPTA K, GIRVIN S M. Mott insulators in strong electric fields[J/OL]. Physical Review B, 2002, 66(7): 075128[2023-11-12]. DOI:10.1103/PhysRevB.66.075128http://dx.doi.org/10.1103/PhysRevB.66.075128.
FENDLEY P, SENGUPTA K, SACHDEV S. Competing density-wave orders in a one-dimensional hard-boson model[J/OL]. Physical Review B, 2004, 69(7): 075106[2023-11-12]. DOI:10.1103/PhysRevB.69.075106http://dx.doi.org/10.1103/PhysRevB.69.075106.
RICO E, PICHLER T, DALMONTE M, et al. Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation[J/OL]. Physical Review Letters, 2014, 112(20): 201601[2023-11-12]. DOI:10.1103/PhysRevLett.112.201601http://dx.doi.org/10.1103/PhysRevLett.112.201601.
YAO Z, PAN L, LIU S, et al. Quantum many-body scars and quantum criticality[J/OL]. Physical Review B, 2022, 105(12): 125123[2023-11-12]. DOI:10.1103/PhysRevB.105.125123http://dx.doi.org/10.1103/PhysRevB.105.125123.
HO W W, CHOI S, PICHLER H, et al. Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach[J/OL]. Physical Review Letters, 2019, 122(4): 040603[2023-11-12]. DOI:10.1103/PhysRevLett.122.040603http://dx.doi.org/10.1103/PhysRevLett.122.040603.
MICHAILIDIS A A, TURNER C J, PAPIĆ Z, et al. Slow Quantum Thermalization and Many-Body Revivals from Mixed Phase Space[J/OL]. Physical Review X, 2020, 10(1): 011055[2023-11-12]. DOI:10.1103/PhysRevX.10.011055http://dx.doi.org/10.1103/PhysRevX.10.011055.
HAEGEMAN J, CIRAC J I, OSBORNE T J, et al. Time-Dependent Variational Principle for Quantum Lattices[J/OL]. Physical Review Letters, 2011, 107(7): 070601[2023-11-12]. DOI:10.1103/PhysRevLett.107.070601http://dx.doi.org/10.1103/PhysRevLett.107.070601.
HAEGEMAN J, LUBICH C, OSELEDETS I, et al. Unifying time evolution and optimization with matrix product states[J/OL]. Physical Review B, 2016, 94(16): 165116[2023-11-12]. DOI:10.1103/PhysRevB.94.165116http://dx.doi.org/10.1103/PhysRevB.94.165116.
TESCHL G. Ordinary differential equations and dynamical systems, American Mathematical Society, U.S.A,2012.
TURNER C J, DESAULES J Y, BULL K, et al. Correspondence Principle for Many-Body Scars in Ultracold Rydberg Atoms[J/OL]. Physical Review X, 2021, 11(2): 021021[2023-11-12]. DOI:10.1103/PhysRevX.11.021021http://dx.doi.org/10.1103/PhysRevX.11.021021.
BLUVSTEIN D, OMRAN A, LEVINE H, et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays[J/OL]. Science, 2021, 371(6536): 1355-1359[2023-11-12]. DOI:10.1126/science.abg2530http://dx.doi.org/10.1126/science.abg2530.
MASKARA N, MICHAILIDIS A A, HO W W, et al. Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving[J/OL]. Physical Review Letters, 2021, 127(9): 090602[2023-11-12]. DOI:10.1103/PhysRevLett.127.090602http://dx.doi.org/10.1103/PhysRevLett.127.090602.
ABANIN D, DE ROECK W, HO W W, et al. A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems[J/OL]. Communications in Mathematical Physics, 2017, 354(3): 809-827[2023-11-12].DOI:10.1007/s00220-017-2930-xhttp://dx.doi.org/10.1007/s00220-017-2930-x.
SERBYN M, ABANIN D A, PAPIĆ Z. Quantum many-body scars and weak breaking of ergodicity[J/OL]. Nature Physics, 2021, 17(6): 675-685[2023-11-12].DOI:10.1038/s41567-021-01230-2http://dx.doi.org/10.1038/s41567-021-01230-2.
MOUDGALYA S, BERNEVIG B A, REGNAULT N. Quantum many-body scars and Hilbert space fragmentation: a review of exact results[J/OL]. Reports on Progress in Physics, 2022, 85(8): 086501[2023-11-12].DOI:10.1088/1361-6633/ac73a0http://dx.doi.org/10.1088/1361-6633/ac73a0.
CHANDRAN A, IADECOLA T, KHEMANI V, et al. Quantum Many-Body Scars: A Quasiparticle Perspective[J/OL]. Annual Review of Condensed Matter Physics, 2023, 14(1): 443-469[2023-11-12]. DOI:10.1146/annurev-conmatphys-031620-101617http://dx.doi.org/10.1146/annurev-conmatphys-031620-101617.
MOUDGALYA S, REGNAULT N, BERNEVIG B A. Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis[J/OL]. Physical Review B, 2018, 98(23): 235156[2023-11-12]. DOI:10.1103/PhysRevB.98.235156http://dx.doi.org/10.1103/PhysRevB.98.235156.
MARK D K, LIN C J, MOTRUNICH O I. Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models[J/OL]. Physical Review B, 2020, 101(19): 195131[2023-11-12]. DOI:10.1103/PhysRevB.101.195131http://dx.doi.org/10.1103/PhysRevB.101.195131.
MARK D K, MOTRUNICH O I. η -pairing states as true scars in an extended Hubbard model[J/OL]. Physical Review B, 2020, 102(7): 075132[2023-11-12]. DOI:10.1103/PhysRevB.102.075132http://dx.doi.org/10.1103/PhysRevB.102.075132.
MOUDGALYA S, REGNAULT N, BERNEVIG B A. Eta-Pairing in Hubbard Models: From Spectrum Generating Algebras to Quantum Many-Body Scars[J/OL]. 2020[2023-11-12]. https://arxiv.org/abs/2004.13727https://arxiv.org/abs/2004.13727.
PAKROUSKI K, PALLEGAR P N, POPOV F K, et al. Many-Body Scars as a Group Invariant Sector of Hilbert Space[J/OL]. Physical Review Letters, 2020, 125(23): 230602[2023-11-12]. DOI:10.1103/PhysRevLett.125.230602http://dx.doi.org/10.1103/PhysRevLett.125.230602.
REN J, LIANG C, FANG C. Quasisymmetry Groups and Many-Body Scar Dynamics[J/OL]. Physical Review Letters, 2021, 126(12): 120604[2023-11-12]. DOI:10.1103/PhysRevLett.126.120604http://dx.doi.org/10.1103/PhysRevLett.126.120604.
OMRAN A, LEVINE H, KEESLING A, et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays[J/OL]. Science, 2019, 365(6453): 570-574[2023-11-12].DOI:10.1126/science.aax9743http://dx.doi.org/10.1126/science.aax9743.
DOOLEY S. Robust Quantum Sensing in Strongly Interacting Systems with Many-Body Scars[J/OL]. PRX Quantum, 2021, 2(2): 020330[2023-11-12]. DOI:10.1103/PRXQuantum.2.020330http://dx.doi.org/10.1103/PRXQuantum.2.020330.
KAO W, LI K Y, LIN K Y, et al. Topological pumping of a 1D dipolar gas into strongly correlated prethermal states[J/OL]. Science, 2021, 371(6526): 296-300[2023-11-12]. DOI:10.1126/science.abb4928http://dx.doi.org/10.1126/science.abb4928.
SCHERG S, KOHLERT T, SALA P, et al. Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains[J/OL]. Nature Communications, 2021, 12(1): 4490[2023-11-12].DOI:10.1038/s41467-021-24726-0http://dx.doi.org/10.1038/s41467-021-24726-0.
SALA P, RAKOVSZKY T, VERRESEN R, et al. Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians[J/OL]. Physical Review X, 2020, 10(1): 011047[2023-11-12]. DOI:10.1103/PhysRevX.10.011047http://dx.doi.org/10.1103/PhysRevX.10.011047.
KHEMANI V, HERMELE M, NANDKISHORE R. Localization from Hilbert space shattering: From theory to physical realizations[J/OL]. Physical Review B, 2020, 101(17): 174204[2023-11-12]. DOI:10.1103/PhysRevB.101.174204http://dx.doi.org/10.1103/PhysRevB.101.174204.
MOUDGALYA S, PREM A, NANDKISHORE R, et al. Thermalization and Its Absence within Krylov Subspaces of a Constrained Hamiltonian[M/OL]//LIAN B, LIU C X, DEMLER E, 等. Memorial Volume for Shoucheng Zhang. WORLDSCIENTIFIC, 2021: 147-209[2023-11-12].DOI:10.1142/9789811231711_0009http://dx.doi.org/10.1142/9789811231711_0009.
KORMOS M, COLLURA M, TAKÁCS G, et al. Real-time confinement following a quantum quench to a non-integrable model[J/OL]. Nature Physics, 2017, 13(3): 246-249[2023-11-12].DOI:10.1038/nphys3934http://dx.doi.org/10.1038/nphys3934.
ROBINSON N J, JAMES A J A, KONIK R M. Signatures of rare states and thermalization in a theory with confinement[J/OL]. Physical Review B, 2019, 99(19): 195108[2023-11-12]. DOI:10.1103/PhysRevB.99.195108http://dx.doi.org/10.1103/PhysRevB.99.195108.
YANG Z C, LIU F, GORSHKOV A V, et al. Hilbert-Space Fragmentation from Strict Confinement[J/OL]. Physical Review Letters, 2020, 124(20): 207602[2023-11-12]. DOI:10.1103/PhysRevLett.124.207602http://dx.doi.org/10.1103/PhysRevLett.124.207602.
CASTRO-ALVAREDO O A, LENCSÉS M, SZÉCSÉNYI I M, et al. Entanglement Oscillations near a Quantum Critical Point[J/OL]. Physical Review Letters, 2020, 124(23): 230601[2023-11-12]. DOI:10.1103/PhysRevLett.124.230601http://dx.doi.org/10.1103/PhysRevLett.124.230601.
MAGNIFICO G, DALMONTE M, FACCHI P, et al. Real Time Dynamics and Confinement in the Z n Schwinger-Weyl lattice model for 1+1 QED[J/OL]. Quantum, 2020, 4: 281[2023-11-12].DOI:10.22331/q-2020-06-15-281http://dx.doi.org/10.22331/q-2020-06-15-281.
CHANDA T, ZAKRZEWSKI J, LEWENSTEIN M, et al. Confinement and Lack of Thermalization after Quenches in the Bosonic Schwinger Model[J/OL]. Physical Review Letters, 2020, 124(18): 180602[2023-11-12]. DOI:10.1103/PhysRevLett.124.180602http://dx.doi.org/10.1103/PhysRevLett.124.180602.
BORLA U, VERRESEN R, GRUSDT F, et al. Confined Phases of One-Dimensional Spinless Fermions Coupled to Z 2 Gauge Theory[J/OL]. Physical Review Letters, 2020, 124(12): 120503[2023-11-12]. DOI:10.1103/PhysRevLett.124.120503http://dx.doi.org/10.1103/PhysRevLett.124.120503.
SURACE F M, MAZZA P P, GIUDICI G, et al. Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators[J/OL]. Physical Review X, 2020, 10(2): 021041[2023-11-12]. DOI:10.1103/PhysRevX.10.021041http://dx.doi.org/10.1103/PhysRevX.10.021041.
CELI A, VERMERSCH B, VIYUELA O, et al. Emerging Two-Dimensional Gauge Theories in Rydberg Configurable Arrays[J/OL]. Physical Review X, 2020, 10(2): 021057[2023-11-12]. DOI:10.1103/PhysRevX.10.021057http://dx.doi.org/10.1103/PhysRevX.10.021057.
PANCOTTI N, GIUDICE G, CIRAC J I, et al. Quantum East Model: Localization, Nonthermal Eigenstates, and Slow Dynamics[J/OL]. Physical Review X, 2020, 10(2): 021051[2023-11-12]. DOI:10.1103/PhysRevX.10.021051http://dx.doi.org/10.1103/PhysRevX.10.021051.
YANG B, SUN H, OTT R, et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator[J/OL]. Nature, 2020, 587(7834): 392-396[2023-11-12].DOI:10.1038/s41586-020-2910-8http://dx.doi.org/10.1038/s41586-020-2910-8.
ZHOU Z Y, SU G X, HALIMEH J C, et al. Thermalization dynamics of a gauge theory on a quantum simulator[J/OL]. Science, 2022, 377(6603): 311-314[2023-11-12]. DOI:10.1126/science.abl6277http://dx.doi.org/10.1126/science.abl6277.
OSBORNE J, MCCULLOCH I P, YANG B, et al. Large-Scale 2+1D U(1) Gauge Theory with Dynamical Matter in a Cold-Atom Quantum Simulator[J/OL]. 2022[2023-11-12]. https://arxiv.org/abs/2211.01380https://arxiv.org/abs/2211.01380.
OTT R, ZACHE T V, JENDRZEJEWSKI F, et al. Scalable Cold-Atom Quantum Simulator for Two-Dimensional QED[J/OL]. Physical Review Letters, 2021, 127(13): 130504[2023-11-12]. DOI:10.1103/PhysRevLett.127.130504http://dx.doi.org/10.1103/PhysRevLett.127.130504.
AIDELSBURGER M, BARBIERO L, BERMUDEZ A, et al. Cold atoms meet lattice gauge theory[J/OL]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 380(2216): 20210064[2023-11-12]. DOI:10.1098/rsta.2021.0064http://dx.doi.org/10.1098/rsta.2021.0064.
WANG H Y, ZHANG W Y, YAO Z, et al. Interrelated Thermalization and Quantum Criticality in a Lattice Gauge Simulator[J/OL]. Physical Review Letters, 2023, 131(5): 050401[2023-11-12]. DOI:10.1103/PhysRevLett.131.050401http://dx.doi.org/10.1103/PhysRevLett.131.050401.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构