1.国家开放大学,北京 100039
2.慕尼黑工业大学,慕尼黑 德国 85748
[ "Oskar Haidn,男,教授;博士,博士生导师;慕尼黑工业大学空间与大地测量学院火箭推进系教授;欧洲宇航学会会士(EUCASS Fellow),美国航空航天学会副会士(AIAA Associate Fellow);研究领域涉及液体火箭发动机设计、燃烧理论、流体力学、传热与冷却等;受欧盟、欧空局、德国宇航中心、德国自然科学基金委等资助,领导或共同领导项目资助共计超6000万人民币;在Proceeding of The Combustion Institute, Combustion and Flame, Fuel, International Journal of Heat and Mass Transfer, Aerospace Science and Technology, Journal of Propulsion and Power等国际顶级期刊上发表论文一百余篇并担任审稿人,参与编著相关专著十余部;担任欧洲雾化和喷雾学会、欧洲航空航天学会、美国航空航天学会等会议的组织者和会议主席,在国际专业学术会议发表论文二百余篇。Email: oskar.haidn@tum.de" ]
纸质出版日期:2023-06-25,
收稿日期:2023-04-02,
修回日期:2023-05-05,
扫 描 看 全 文
吴楚婷,王洪信,Oskar Haidn.数字化燃料中心建设及遗传算法的应用[J].新兴科学和技术趋势,2023,2(2):126-134.
WU Chuting,WANG Hongxin,Haidn Oskar.Construction of Digital Fuel Center and Application of Genetic Algorithms[J].Emerging Science and Technology,2023,2(2):126-134.
吴楚婷,王洪信,Oskar Haidn.数字化燃料中心建设及遗传算法的应用[J].新兴科学和技术趋势,2023,2(2):126-134. DOI: 10.12405/j.issn.2097-1486.2023.02.002.
WU Chuting,WANG Hongxin,Haidn Oskar.Construction of Digital Fuel Center and Application of Genetic Algorithms[J].Emerging Science and Technology,2023,2(2):126-134. DOI: 10.12405/j.issn.2097-1486.2023.02.002.
随着计算机技术的发展,燃烧科学和工程正朝着数字化、自动化和高效化方向发展。为了紧跟科学进展和需求,慕尼黑工业大学正在建设数字化燃料中心,以用于可再生燃料/能源、新型高效环保燃料和燃烧机械、航空航天推进技术的研究和开发。本文以甲醇燃烧化学动力学模型的优化为例,展示了实验和模型参数的数字化和人工智能优化算法的应用。本研究基于遗传算法建立了对燃烧化学反应动力学的自动优化优化工具,并将其用于甲醇燃烧的化学动力学模型优化。已优化了包括40个重要反应的反应速率常数和第三体效率以及反应模型的选定物种在内的54个参数。用于模型验证的实验数据包括激波管测得的点火延迟时间和在喷射搅拌反应器和平推流反应器测得的浓度分布。甲醇氧化的数值仿真使用开源工具Cantera进行,对点火延迟时间和浓度的模拟数据使用遗传算法进行优化。与初始模型的计算结果相比,优化模型对实验目标的预测能力得到了显著的提高,本研究所开发的遗传算法工具已被证明能够用于优化详细化学动力学模型。
With the development of computer technology, the field of combustion science and engineering is advancing towards digitization, automation, and efficiency. In order to keep pace with scientific advancements and demands, the Technical University of Munich is establishing a digital fuel center for research and development in renewable fuels/energy, novel high-efficiency environmentally friendly fuels, combustion machinery, and aerospace propulsion technology. This article takes the optimization of the methanol combustion chemical kinetics model as an example to demonstrate the application of digitalization and artificial intelligence optimization algorithms for experimental and model parameters. This work presents an automatic optimization tool using a genetic algorithm for the chemical kinetic model of methanol combustion. 54 parameters including reaction rate constants and third body efficiencies for 40 important reactions and selected species of the reaction model have been optimized. Experimental data for model validation include: ignition delay times measured in shock tubes and concentration profiles measured in plug flow reactors. Homogeneous modeling of the methanol oxidation was conducted with the open-source tool Cantera in Python and the simulated ignition delay times and concentrations were optimized using the genetic algorithm programed in Python. The prediction ability of the optimized model has been improved compared with the initial model based on the estimated reaction rate constants. The developed genetic algorithm tool was proved to be able to optimize the detailed chemical kinetic model.
燃烧化学动力学遗传算法甲醇
MethanolCombustionChemical kinetic modelGenetic algorithm
HIRSCHFELDER J, CURTISS C, CAMPBELL D E. The theory of flame propagation. IV [J]. The Journal of Physical Chemistry, 1953, 57(4): 403-414. DOI: 10.1021/j150505a004http://dx.doi.org/10.1021/j150505a004.
DOMON B, AEBERSOLD R. Mass spectrometry and protein analysis [J]. Science, 2006, 312(5771): 212-217. DOI: 10.1126/science.1124619http://dx.doi.org/10.1126/science.1124619.
HANSON R K, DAVIDSON D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry [J]. Progress in Energy and Combustion Science, 2014, 44: 103-114. DOI: 10.1016/j.pecs.2014.05.001http://dx.doi.org/10.1016/j.pecs.2014.05.001.
TRUHLAR D G, GARRETT B C, KLIPPENSTEIN S J. Current status of transition-state theory [J]. The Journal of physical chemistry, 1996, 100(31): 12771-12800. DOI: 10.1021/jp953748qhttp://dx.doi.org/10.1021/jp953748q.
POLLAK E, TALKNER P. Reaction rate theory: What it was, where is it today, and where is it going? [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2005, 15(2): 026116. DOI: 10.1063/1.1858782http://dx.doi.org/10.1063/1.1858782.
BAULCH D L, BOWMAN C T, COBOS C J, et al. Evaluated Kinetic Data for Combustion Modeling: Supplement II [J]. Journal of Physical and Chemical Reference Data, 2005, 34(3): 757-1397. DOI: 10.1063/1.1748524http://dx.doi.org/10.1063/1.1748524.
WANG H, SHEEN D A. Combustion kinetic model uncertainty quantification, propagation and minimization [J]. Progress in Energy and Combustion Science, 2015, 47: 1-31. DOI: 10.1016/j.pecs.2014.10.002http://dx.doi.org/10.1016/j.pecs.2014.10.002.
FRENKLACH M, PACKARD A, GARCIA-DONATO G, et al. Comparison of statistical and deterministic frameworks of uncertainty quantification [J]. SIAM/ASA Journal on Uncertainty Quantification, 2016, 4(1): 875-901. DOI: 10.1137/15M1019131http://dx.doi.org/10.1137/15M1019131.
NOORANI K E, AKIH-KUMGEH B, BERGTHORSON J M. Comparative high temperature shock tube ignition of C1- C4 primary alcohols [J]. Energy & fuels, 2010, 24(11): 5834-5843. DOI: 10.1021/ef1009692http://dx.doi.org/10.1021/ef1009692.
BURKE U, METCALFE W K, BURKE S M, et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation [J]. Combustion and Flame, 2016, 165: 125-136. DOI: 10.1016/j.combustflame.2015.11.004http://dx.doi.org/10.1016/j.combustflame.2015.11.004.
PINZóN L, MATHIEU O, MULVIHILL C, et al. Ignition delay time and H2O measurements during methanol oxidation behind reflected shock waves [J]. Combustion and Flame, 2019, 203: 143-156. DOI: 10.1016/j.combustflame.2019.01.036http://dx.doi.org/10.1016/j.combustflame.2019.01.036.
LI L, HU M, QU W, et al. Shock tube and kinetic study on auto-ignition characteristics of methanol/n-heptane mixtures at high temperature [J]. Energy, 2021, 233: 121152. DOI: 10.1016/j.energy.2021.121152http://dx.doi.org/10.1016/j.energy.2021.121152.
DAYMA G, ALI K H, DAGAUT P. Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide [J]. Proceedings of the Combustion Institute, 2007, 31(1): 411-418. DOI: 10.1016/j.proci.2006.07.143http://dx.doi.org/10.1016/j.proci.2006.07.143.
ARANDA V, CHRISTENSEN J, ALZUETA M U, et al. Experimental and kinetic modeling study of methanol ignition and oxidation at high pressure [J]. International Journal of Chemical Kinetics, 2013, 45(5): 283-294. DOI: 10.1002/kin.20764http://dx.doi.org/10.1002/kin.20764.
XU S, LIN M-C. Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH [J]. Proceedings of the Combustion Institute, 2007, 31(1): 159-166. DOI: 10.1016/j.proci.2006.07.132http://dx.doi.org/10.1016/j.proci.2006.07.132.
GALANO A, ALVAREZ-IDABOY J R, BRAVO-PéREZ G, et al. Gas phase reactions of C 1–C 4 alcohols with the OH radical: A quantum mechanical approach [J]. Physical Chemistry Chemical Physics, 2002, 4(19): 4648-4662. DOI: 10.1039/B205630Ehttp://dx.doi.org/10.1039/B205630E.
JODKOWSKI J T, RAYEZ M-T, RAYEZ J-C, et al. Theoretical study of the kinetics of the hydrogen abstraction from methanol. 3. Reaction of methanol with hydrogen atom, methyl, and hydroxyl radicals [J]. The Journal of Physical Chemistry A, 1999, 103(19): 3750-3765. DOI: 10.1021/jp984367qhttp://dx.doi.org/10.1021/jp984367q.
TSUBOI T, HASHIMOTO K. Shock tube study on homogeneous thermal oxidation of methanol [J]. Combustion and Flame, 1981, 42: 61-76. DOI: 10.1016/0010-2180(81)90142-5http://dx.doi.org/10.1016/0010-2180(81)90142-5.
PAGSBERG P, MUNK J, SILLESEN A, et al. UV spectrum and kinetics of hydroxymethyl radicals [J]. Chemical physics letters, 1988, 146(5): 375-381. DOI: 10.1016/0009-2614(88)87462-1http://dx.doi.org/10.1016/0009-2614(88)87462-1.
LI S, WILLIAMS F. Experimental and numerical studies of two-stage methanol flames [Z]. Symposium (International) on Combustion. 1996: 1017-1024. DOI: 10.1016/S0082-0784(96)80315-8.
VANDOOREN J, TIGGELEN P. Experimental investigation of methanol oxidation in flames: Mechanisms and rate constants of elementary steps [J]. Symposium on Combustion, 1981, 18(1): 473-483. DOI: 10.1016/S0082-0784(96)80315-8http://dx.doi.org/10.1016/S0082-0784(96)80315-8.
WESTBROOK C K, DRYER F L. Comprehensive mechanism for methanol oxidation [J]. Combustion Science and Technology, 1979, 20(3-4): 125-140. DOI: 10.1080/00102207908946902http://dx.doi.org/10.1080/00102207908946902.
OVEREND R, PARASKEVOPOULOS G. Rates of hydroxyl radical reactions. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296 K [J]. The Journal of Physical Chemistry, 1978, 82(12): 1329-1333. DOI: 10.1021/j100501a001http://dx.doi.org/10.1021/j100501a001.
BOWMAN C T. A shock-tube investigation of the high-temperature oxidation of methanol [J]. Combustion and Flame, 1975, 25: 343-354. DOI: 10.1016/0010-2180(75)90106-6http://dx.doi.org/10.1016/0010-2180(75)90106-6.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构