化学生物学与分子工程教育部重点实验室,山西大学分子科学研究所,山西 太原 030006
[ "岳永康,男,副教授;博士,博士生导师;山西省优秀青年学术带头人。Email:ykyue@sxu.edu.cn" ]
[ "阴彩霞,女,教授;博士,博士生导师;国家杰出青年科学基金获得者。Email: yincx@sxu.edu.cn" ]
纸质出版日期:2023-06-25,
收稿日期:2023-04-20,
修回日期:2023-05-20,
扫 描 看 全 文
岳永康,阴彩霞.荧光探针与高信噪比活体荧光成像[J].新兴科学和技术趋势,2023,2(2):111-125.
YUE Yongkang,YIN Caixia.Fluorescent probes for high signal-to-noise ratio in vivo imaging[J].Emerging Science and Technology,2023,2(2):111-125.
岳永康,阴彩霞.荧光探针与高信噪比活体荧光成像[J].新兴科学和技术趋势,2023,2(2):111-125. DOI: 10.12405/j.issn.2097-1486.2023.02.001.
YUE Yongkang,YIN Caixia.Fluorescent probes for high signal-to-noise ratio in vivo imaging[J].Emerging Science and Technology,2023,2(2):111-125. DOI: 10.12405/j.issn.2097-1486.2023.02.001.
荧光探针基于荧光染料功能化修饰,实现对生物大分子、活性氧物种、活性硫物种、金属离子等物质的荧光检测。其非破坏性标记和检测属性使得他们在生命科学领域研究中备受青睐。近年来,随着染料精细化工、有机合成化学和荧光成像技术的共同创新,荧光成像在活体原位标记中不断取得新突破,有力地推动了活体荧光成像技术从基础研究向临床前应用迈进。本文中,我们将从荧光探针的基本概念出发,结合我们团队和其他同行的代表性研究成果,讨论荧光探针与活体荧光成像信噪比的相关性,展望其在促进生命科学领域分子水平认知的应用前景。
Fluorescent probes can detect biological macromolecules, active oxygen species, active sulfur species, metal ions, etc. via fluorescence signal changes of the functional modification of fluorescent dyes. Their non-destructive labeling and detecting properties are favored by life science researchers. In recent years, with the joint innovation of dye chemical industry, organic synthetic chemistry and fluorescence imaging technology, fluorescence imaging has continuously made new breakthroughs in
in situ
labeling
in vivo
, which has effectively promoted the development of fluorescence imaging technology from basic research to pre-clinical application. This paper starts from the basic concept of fluorescent probe, combined with the representative research results of our team and others. It discusses the correlation between fluorescent probes and the signal-to-noise ratio of fluorescence imaging
in vivo
, and the application prospects of promoting molecular level cognition in life science.
荧光探针荧光成像信噪比动物活体
fluorescent probefluorescence imagingsignal-to-noise ratioin vivo
TSIEN R Y. Imagining imaging's future[J]. Nature Reviews Molecular Cell Biology, 2003, 4(SUPPL.): 16-21. DOI 10.1038/nrm1196.
WU L, SEDGWICK A C, SUN X, et al. Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species[J]. Accounts of Chemical Research, 2019, 52(9): 2582-2597. DOI 10.1021/acs.accounts.9b00302.
YIN C, HUO F, ZHANG J, et al. Thiol-addition reactions and their applications in thiol recognition[J]. Chemical Society Reviews, 2013, 42(14): 6032-6059. DOI 10.1039/c3cs60055f.
YUE Y, HUO F, YIN C. The chronological evolution of small organic molecular fluorescent probes for thiols[J]. Chemical Science, 2021, 12(4): 1220-1226. DOI 10.1039/d0sc04960c.
ZHANG J, CHAI X, HE X P, et al. Fluorogenic probes for disease-relevant enzymes[J]. Chemical Society Reviews, 2019, 48(2): 683-722. DOI 10.1039/c7cs00907k.
VON DIEZMANN L, SHECHTMAN Y, MOERNER W E. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking[J]. Chemical Reviews, 2017, 117(11): 7244-7275. DOI 10.1021/acs.chemrev.6b00629.
HÖVELMANN F, SEITZ O. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes[J]. Accounts of Chemical Research, 2016, 49(4): 714-723. DOI 10.1021/acs.accounts.5b00546.
ZHU H, FAN J, DU J, et al. Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles[J]. Accounts of Chemical Research, 2016, 49(10): 2115-2126. DOI 10.1021/acs.accounts.6b00292.
OHATA J, BRUEMMER K J, CHANG C J. Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems[J]. Accounts of Chemical Research, 2019, 52(10): 2841-2848. DOI 10.1021/acs.accounts.9b00386.
ASHTON T D, JOLLIFFE K A, PFEFFER F M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo[J]. Chemical Society Reviews, 2015, 44(14): 4547-4595. DOI 10.1039/c4cs00372a.
WHITNEY M A, CRISP J L, NGUYEN L T, et al. Fluorescent peptides highlight peripheral nerves during surgery in mice[J]. Nature Biotechnology, 2011, 29(4): 352-356. DOI 10.1038/nbt.1764.
LIU R, XU Y, XU K, et al. Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation[J]. Aggregate, 2021, 2(3): e23. DOI 10.1002/agt2.23.
GUNAYDIN G, GEDIK M E, AYAN S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status[J]. Frontiers in Chemistry, 2021, 9(August): 686303. DOI 10.3389/fchem.2021.686303.
VICKERMAN B M, ZYWOT E M, TARRANT T K, et al. Taking phototherapeutics from concept to clinical launch[J]. Nature Reviews Chemistry, 2021, 5(11): 816-834. DOI 10.1038/s41570-021-00326-w.
SIEBRAND W. Radiationless transitions in polyatomic molecules. I. Calculation of Franck-Condon factors[J]. The Journal of Chemical Physics, 1967, 46(2): 440-447. DOI 10.1063/1.1840685.
JACQUES S L. Erratum: Optical properties of biological tissues: A review (Physics in Medicine and Biology (2013) 58)[J]. Physics in Medicine and Biology, 2013, 58(14): 5007-5008. DOI 10.1088/0031-9155/58/14/5007.
BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm[J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2543-2555. DOI 10.1088/0022-3727/38/15/004.
FRIEBEL M, HELFMANN J, NETZ U, et al. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm[J]. Journal of Biomedical Optics, 2009, 14(3): 034001. DOI 10.1117/1.3127200.
CARR J A, AELLEN M, FRANKE D, et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(37): 9080-9085. DOI 10.1073/pnas.1803210115.
FRANGIONI J V. In vivo near-infrared fluorescence imaging[J]. Current Opinion in Chemical Biology, 2003, 7(5): 626-634. DOI 10.1016/j.cbpa.2003.08.007.
BHAUMIK S, DEPUY J, KLIMASH J. Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging[J]. Lab Animal, 2007, 36(8): 40-43. DOI 10.1038/laban0907-40.
SAIF M, KWANTEN W J, CARR J A, et al. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin[J]. Nature Biomedical Engineering, 2020, 4(8): 801-813. DOI 10.1038/s41551-020-0569-y.
YANG Q, MA H, LIANG Y, et al. Rational Design of High Brightness NIR-II Organic Dyes with S-D-A-D-S Structure[J]. Accounts of Materials Research, 2021, 2(3): 170-183. DOI 10.1021/accountsmr.0c00114.
MAO Z, RHA H, KIM J, et al. THQ–Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores[J]. Advanced Science, 2023, 10(18): 2301177. DOI 10.1002/advs.202301177.
LIU Y, LI Y, KOO S, et al. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics[J]. Chemical Reviews, 2022, 122(1): 209-268. DOI 10.1021/acs.chemrev.1c00553.
LI J, DONG Y, WEI R, et al. Stable, Bright, and Long-Fluorescence-Lifetime Dyes for Deep-Near-Infrared Bioimaging[J]. Journal of the American Chemical Society, 2022, 144(31): 14351-14362. DOI 10.1021/jacs.2c05826.
WEI R, DONG Y, WANG X, et al. Rigid and Photostable Shortwave Infrared Dye Absorbing/Emitting beyond 1200 nm for High-Contrast Multiplexed Imaging[J]. Journal of the American Chemical Society, 2023, 145(22): 12013-12022. DOI 10.1021/jacs.3c00594.
DALY H C, MATIKONDA S S, STEFFENS H C, et al. Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold Beyond 1000 nm[J]. Photochemistry and Photobiology, 2022, 98(2): 325-333. DOI 10.1111/php.13544.
COOPER M, EBNER A, BRIGGS M, et al. Cy3BTM: Improving the performance of cyanine dyes[J]. Journal of Fluorescence, 2004, 14(2): 145-150. DOI 10.1023/B:JOFL.0000016286.62641.59.
BANDI V G, LUCIANO M P, SACCOMANO M, et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines[J]. Nature Methods, 2022, 19(3): 353-358. DOI 10.1038/s41592-022-01394-6.
EIRING P, MCLAUGHLIN R, MATIKONDA S S, et al. Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications[J]. Angewandte Chemie - International Edition, 2021, 60(51): 26685-26693. DOI 10.1002/anie.202109749.
HYUN H, PARK M H, OWENS E A, et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging[J]. Nature Medicine, 2015, 21(2): 192-197. DOI 10.1038/nm.3728.
CHEN Y, WANG S, ZHANG F. Near-infrared luminescence high-contrast in vivo biomedical imaging[J]. Nature Reviews Bioengineering, 2023, 1(1): 60-78. DOI 10.1038/s44222-022-00002-8.
HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 2014, 8(9): 723-730. DOI 10.1038/nphoton.2014.166.
COSCO E D, ARÚS B A, SPEARMAN A L, et al. Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color in Vivo Imaging with Shortwave Infrared Detection[J]. Journal of the American Chemical Society, 2021, 143(18): 6836-6846. DOI 10.1021/jacs.0c11599.
REN T B, XU W, ZHANG W, et al. A General Method to Increase Stokes Shift by Introducing Alternating Vibronic Structures[J]. Journal of the American Chemical Society, 2018, 140(24): 7716-7722. DOI 10.1021/jacs.8b04404.
JIANG G, REN T B, D'ESTE E, et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy[J]. Nature Communications, 2022, 13(1): 2264. DOI 10.1038/s41467-022-29547-3.
YUE Y, ZHAO T, XU Z, et al. Enlarging the Stokes Shift by Weakening the π-Conjugation of Cyanines for High Signal-to-Noise Ratiometric Imaging[J]. Advanced Science, 2023, 10(3): 2205080. DOI 10.1002/advs.202205080.
BOUIT P A, ARONICA C, TOUPET L, et al. Continuous symmetry breaking induced by ion pairing effect in heptamethine cyanine dyes: Beyond the cyanine limit[J]. Journal of the American Chemical Society, 2010, 132(12): 4328-4335. DOI 10.1021/ja9100886.
DALY B, LING J, DE SILVA A P. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches[J]. Chemical Society Reviews, 2015, 44(13): 4203-4211. DOI 10.1039/c4cs00334a.
CHI W, CHEN J, LIU W, et al. A General Descriptor Δ e Enables the Quantitative Development of Luminescent Materials Based on Photoinduced Electron Transfer[J]. Journal of the American Chemical Society, 2020, 142(14): 6777-6785. DOI 10.1021/jacs.0c01473.
DANCE Z E X, MICKLEY S M, WILSON T M, et al. Intersystem crossing mediated by photoinduced intramolecular charge transfer: Julolidine - Anthracene molecules with perpendicular π systems[J]. Journal of Physical Chemistry A, 2008, 112(18): 4194-4201. DOI 10.1021/jp800561g.
WANG Z, SUKHANOV A A, TOFFOLETTI A, et al. Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence[J]. Journal of Physical Chemistry C, 2019, 123(1): 265-274. DOI 10.1021/acs.jpcc.8b10835.
SASIKUMAR D, JOHN A T, SUNNY J, et al. Access to the triplet excited states of organic chromophores[J]. Chemical Society Reviews, 2020, 49(17): 6122-6140. DOI 10.1039/d0cs00484g.
WANG C, CHI W, QIAO Q, et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores[J]. Chemical Society Reviews, 2021, 50(22): 12656-12678. DOI 10.1039/d1cs00239b.
JONES G, JACKSON W R, CHOI C Y, et al. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism[J]. Journal of Physical Chemistry, 1985, 89(2): 294-300. DOI 10.1021/j100248a024.
KARSTENS T, KOBS K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements [5][J]. Journal of Physical Chemistry, 1980, 84(14): 1871-1872. DOI 10.1021/j100451a030.
LIU X, QIAO Q, TIAN W, et al. Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer[J]. Journal of the American Chemical Society, 2016, 138(22): 6960-6963. DOI 10.1021/jacs.6b03924.
GRIMM J B, ENGLISH B P, CHEN J, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy[J]. Nature Methods, 2015, 12(3): 244-250. DOI 10.1038/nmeth.3256.
GRIMM J B, MUTHUSAMY A K, LIANG Y, et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging[J]. Nature Methods, 2017, 14(10): 987-994. DOI 10.1038/nmeth.4403.
YE Z, YANG W, WANG C, et al. Quaternary Piperazine-Substituted Rhodamines with Enhanced Brightness for Super-Resolution Imaging[J]. Journal of the American Chemical Society, 2019, 141(37): 14491-14495. DOI 10.1021/jacs.9b04893.
DU Z, WANG W, LUO S, et al. Self-Renewable Tag for Photostable Fluorescence Imaging of Proteins[J]. Journal of the American Chemical Society, 2023, 145(34): 18968-18976. DOI 10.1021/jacs.3c06102.
WALDECK D H. Photoisomerization Dynamics of Stilbenes[J]. Chemical Reviews, 1991, 91(3): 415-436. DOI 10.1021/cr00003a007.
DUGAVE C, DEMANGE L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications[J]. Chemical Reviews, 2003, 103(7): 2475-2532. DOI 10.1021/cr0104375.
NEVESELÝ T, WIENHOLD M, MOLLOY J J, et al. Advances in the e → Z Isomerization of Alkenes Using Small Molecule Photocatalysts[J]. Chemical Reviews, 2022, 122(2): 2650-2694. DOI 10.1021/acs.chemrev.1c00324.
STENNETT E M S, CIUBA M A, LEVITUS M. Photophysical processes in single molecule organic fluorescent probes[J]. Chemical Society Reviews, 2014, 43(4): 1057-1075. DOI 10.1039/c3cs60211g.
SCHNERMANN M J, LAVIS L D. Rejuvenating old fluorophores with new chemistry[J]. Current Opinion in Chemical Biology, 2023, 75: 102335. DOI 10.1016/j.cbpa.2023.102335.
MATIKONDA S S, HAMMERSLEY G, KUMARI N, et al. Impact of Cyanine Conformational Restraint in the Near-Infrared Range[J]. Journal of Organic Chemistry, 2020, 85(9): 5907-5915. DOI 10.1021/acs.joc.0c00236.
DEREKA B, VAUTHEY E. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation[J]. Chemical Science, 2017, 8(7): 5057-5066. DOI 10.1039/c7sc00437k.
MAILLARD J, KLEHS K, RUMBLE C, et al. Universal quenching of common fluorescent probes by water and alcohols[J]. Chemical Science, 2021, 12(4): 1352-1362. DOI 10.1039/d0sc05431c.
YUE Y, HUO F, CHENG F, et al. Functional synthetic probes for selective targeting and multi-analyte detection and imaging[J]. Chemical Society Reviews, 2019, 48(15): 4155-4177. DOI 10.1039/c8cs01006d.
YIN C X, XIONG K M, HUO F J, et al. Fluorescent Probes with Multiple Binding Sites for the Discrimination of Cys, Hcy, and GSH[J]. Angewandte Chemie - International Edition, 2017, 56(43): 13188-13198. DOI 10.1002/anie.201704084.
UMEZAWA K, YOSHIDA M, KAMIYA M, et al. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics[J]. Nature Chemistry, 2017, 9(3): 279-286. DOI 10.1038/nchem.2648.
YUE Y, ZHAO T, MA K, et al. Endogenous cysteine fluorescence monitoring and its deployment in tumour demarcation[J]. Chemical Communications, 2022, 58(14): 2311-2314. DOI 10.1039/d1cc06765f.
EMMERT S, QUARGNALI G, THALLMAIR S, et al. A locally activatable sensor for robust quantification of organellar glutathione[J]. Nature Chemistry, 2023, 15: 1415-1421. DOI 10.1038/s41557-023-01249-3.
YUE Y, HUO F, WANG Y, et al. Mutual correlation evaluation of Cys and Hcy in serum through reaction activity regulated fluorescence quantification[J]. Chemical Communications, 2020, 56(64): 9146-9149. DOI 10.1039/d0cc03457f.
YUE Y, ZHAO T, WANG Y, et al. HSA-Lys-161 covalent bound fluorescent dye forin vivoblood drug dynamic imaging and tumor mapping[J]. Chemical Science, 2022, 13(1): 218-224. DOI 10.1039/d1sc05484h.
YANG Y, MA M, SHEN L, et al. A Fluorescent Probe for Investigating the Role of Biothiols in Signaling Pathways Associated with Cerebral Ischemia-Reperfusion Injury[J]. Angewandte Chemie - International Edition, 2023: e202310408. DOI 10.1002/anie.202310408.
FEUSTER E K, GLASS T E. Detection of Amines and Unprotected Amino Acids in Aqueous Conditions by Formation of Highly Fluorescent Iminium Ions[J]. Journal of the American Chemical Society, 2003, 125(52): 16174-16175. DOI 10.1021/ja036434m.
KLOCKOW J L, HETTIE K S, GLASS T E. ExoSensor 517: A dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis[J]. ACS Chemical Neuroscience, 2013, 4(10): 1334-1338. DOI 10.1021/cn400128s.
HETTIE K S, GLASS T E. Turn-On Near-Infrared Fluorescent Sensor for Selectively Imaging Serotonin[J]. ACS Chemical Neuroscience, 2016, 7(1): 21-25. DOI 10.1021/acschemneuro.5b00235.
ZHANG L, LIU X A, GILLIS K D, et al. A High-Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis[J]. Angewandte Chemie - International Edition, 2019, 58(23): 7611-7614. DOI 10.1002/anie.201810919.
SMITH M R, ZHANG L, JIN Y, et al. A Turn-On Fluorescent Amino Acid Sensor Reveals Chloroquine's Effect on Cellular Amino Acids via Inhibiting Cathepsin L[J]. ACS Central Science, 2023, 9(5): 980-991. DOI 10.1021/acscentsci.2c01325.
YUE Y, HUO F, YIN C. Noradrenaline-Specific, Efficient Visualization in Brain Tissue Triggered by Unique Cascade Nucleophilic Substitution[J]. Analytical Chemistry, 2019, 91(3): 2255-2259. DOI 10.1021/acs.analchem.8b04836.
MAO L, HAN Y, ZHANG Q W, et al. Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale[J]. Nature Communications, 2023, 14(1): 1419. DOI 10.1038/s41467-023-36869-3.
ZUO Z, KANG T, HU S, et al. A Bioluminescent Probe for Detecting Norepinephrine in Vivo[J]. Analytical Chemistry, 2022, 94(17): 6441-6445. DOI 10.1021/acs.analchem.2c00460.
ZHOU N, HUO F, YUE Y, et al. Specific Fluorescent Probe Based on “protect-Deprotect” to Visualize the Norepinephrine Signaling Pathway and Drug Intervention Tracers[J]. Journal of the American Chemical Society, 2020, 142(41): 17751-17755. DOI 10.1021/jacs.0c08956.
ZHOU N, YIN C, YUE Y, et al. Intramolecular hydrogen bond driven specific nucleophilic addition for highly selective detection of NE and its tumor imaging[J]. Sensors and Actuators B: Chemical, 2022, 373(August): 132711. DOI 10.1016/j.snb.2022.132711.
ZHOU N, YIN C, YUE Y, et al. A NIR fluorescent probe tracing norepinephrine exocytosis and depression occurrence at the cellular level[J]. Chemical Communications, 2022, 58(18): 2999-3002. DOI 10.1039/d2cc00268j.
YAN H, WANG Y, HUO F, et al. Fast-Specific Fluorescent Probes to Visualize Norepinephrine Signaling Pathways and Its Flux in the Epileptic Mice Brain[J]. Journal of the American Chemical Society, 2023, 145(5): 3229-3237. DOI 10.1021/jacs.2c13223.
BUCEVIČIUS J, LUKINAVIČIUS G, GERASIMAITE R. The use of hoechst dyes for DNA staining and beyond[J]. Chemosensors, 2018, 6(2): 18. DOI 10.3390/chemosensors6020018.
LIU H W, CHEN L, XU C, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chemical Society Reviews, 2018, 47(18): 7140-7180. DOI 10.1039/c7cs00862g.
WEN Y, JING N, ZHANG M, et al. A Space-Dependent ‘Enzyme-Substrate’ Type Probe based on ‘Carboxylesterase-Amide Group’ for Ultrafast Fluorescent Imaging Orthotopic Hepatocellular Carcinoma[J]. Advanced Science, 2023, 10(8): 2206681. DOI 10.1002/advs.202206681.
LI X, YU S, LEE Y, et al. In Vivo Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach[J]. Journal of the American Chemical Society, 2019, 141(3): 1366-1372. DOI 10.1021/jacs.8b12167.
TIAN R, ZENG Q, ZHU S, et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics[J]. Science Advances, 2019, 5(9): eaaw0672. DOI 10.1126/sciadv.aaw0672.
ZHENG Y, YE Z, ZHANG X, et al. Recruiting Rate Determines the Blinking Propensity of Rhodamine Fluorophores for Super-Resolution Imaging[J]. Journal of the American Chemical Society, 2023, 145(9): 5125-5133. DOI 10.1021/jacs.2c11395.
LINCOLN R, BOSSI M L, REMMEL M, et al. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy[J]. Nature Chemistry, 2022, 14(9): 1013-1020. DOI 10.1038/s41557-022-00995-0.
CHI W, QIAO Q, WANG C, et al. Descriptor ΔGC-O Enables the Quantitative Design of Spontaneously Blinking Rhodamines for Live-Cell Super-Resolution Imaging[J]. Angewandte Chemie - International Edition, 2020, 59(45): 20215-20223. DOI 10.1002/anie.202010169.
USAMA S M, MARKER S C, LI D H, et al. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging[J]. Journal of the American Chemical Society, 2023, 145(27): 14647-14659. DOI 10.1021/jacs.3c01765.
WEN Y, LONG Z, BAI X, et al. Specific fluorescence release based on synergistic activation of enzymes and position-dependent of electrophilic groups to diagnose intrahepatic cholestasis of pregnancy[J]. Chemical Engineering Journal, 2022, 440: 135978. DOI 10.1016/j.cej.2022.135978.
WEN Y, LONG Z, HUO F, et al. Novel strategy for accurate tumor labeling: endogenous metabolic imaging through metabolic probes[J]. Science China Chemistry, 2022, 65(12): 2517-2527. DOI 10.1007/s11426-022-1372-y.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构