1.西北大学 现代物理研究所,陕西 西安 710069
2.北京计算科学研究中心,北京 100864
[ "陈洋洋,男,副教授;博士;本科毕业于西北大学,博士毕业于中国科学院武汉物理与数学研究所,之后在南方科技大学量子科学与工程研究院从事博士后工作,随后入职西北大学现代物理研究所;目前主要从事一维量子气体的热力学性质、关联性质以及非平衡动力学问题的理论研究;在Phys Rev Lett, Nature Communications等期刊发表论文10余篇。Email:chenyy@nwu.edu.cn" ]
[ "程颂,男,博士;本科毕业于山东大学,博士毕业于澳大利亚国立大学,之后在意大利国际高等研究院(SISSA)和北京计算科学研究中心(CSRC)从事博士后研究。研究领域为低维物理系统的热力学与关联性质等。Email:scheng@csrc.ac.cn" ]
纸质出版日期:2023-03-25,
收稿日期:2023-01-10,
修回日期:2023-02-15,
扫 描 看 全 文
陈洋洋,程颂.一维玻色气体中的量子临界性质[J].新兴科学和技术趋势,2023,2(1):70-79.
CHEN Yangyang,CHENG Song.Quantum critical properties in one-dimensional Bose gas[J].Emerging Science and Technology,2023,2(1):70-79.
陈洋洋,程颂.一维玻色气体中的量子临界性质[J].新兴科学和技术趋势,2023,2(1):70-79. DOI: 10.12405/j.issn.2097-1486.2023.01.008.
CHEN Yangyang,CHENG Song.Quantum critical properties in one-dimensional Bose gas[J].Emerging Science and Technology,2023,2(1):70-79. DOI: 10.12405/j.issn.2097-1486.2023.01.008.
量子相变及其导致的临界现象是量子多体物理研究领域的重要课题。一维玻色气体(Lieb-Liniger模型)由于在理论上可以通过Bethe Ansatz方法严格求解,在实验上可以利用超冷原子气体实现,因此在理解量子临界性质中发挥着重要的作用。本文首先回顾了Bethe Ansatz方法,然后介绍了该模型的量子相变、普适性质以及如何在冷原子气体中观测这些性质,最后展示了以该系统为工作物质的量子热机具有量子优越性。
The quantum phase transitions and the induced quantum criticality are of great importance in the research of quantum many-body physics. The one-dimensional Bose gas (the Lieb-Liniger model) is theoretically of solvability through Bethe Ansatz method and is experimentally realized by using ultracold-atom, and therefore, it has a prominent position in further understanding quantum critical properties. This article first reviews the Bethe Ansatz method, and then introduces various properties of the Lieb-Liniger model including quantum phase transitions, universal properties and the corresponding observation in cold atom experiments. It finally concludes that quantum heat engine has the quantum superiority when Bose gases are used as the working substance.
Lieb-Liniger模型Luttinger液体量子临界量子热机
Lieb-Liniger modelLuttinger liquidquantum criticalityquantum heat engine
SACHDEV S. Quantum phase transitions[M]. Cambridge: Cambridge University Press, 2011. 3-7.
COLEMAN P, SCHOFIELD A J. Quantum criticality[J]. Nature, 2005, 433(7023): 226-229. DOI:10.1038/nature03279http://dx.doi.org/10.1038/nature03279.
SACHDEV S. Quantum criticality: competing ground states in low dimensions[J]. Science, 2000, 288(5465): 475-480. DOI: 10.1126/science.288.5465.4http://dx.doi.org/10.1126/science.288.5465.4.
LÖHNEYSEN H, ROSCH A, VOJTA M, et al. Fermi-liquid instabilities at magnetic quantum phase transitions[J]. Reviews of Modern Physics, 2007, 79(3): 1015. DOI:10.1103/RevModPhys.79.1015http://dx.doi.org/10.1103/RevModPhys.79.1015.
SEBASTIAN S E, HARRISON N, BATISTA C D, et al. Dimensional reduction at a quantum critical point[J]. Nature, 2006, 441(7093): 617-620. DOI:10.1038/nature04732http://dx.doi.org/10.1038/nature04732.
COLDEA R, TENNANT D A, WHEELER E M, et al. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry[J]. Science, 2010, 327(5962): 177-180. DOI: 10.1126/science.1180085http://dx.doi.org/10.1126/science.1180085.
SACHDEV S, KEIMER B. Quantum criticality[J]. Physics Today, 2011, 64: 29. DOI:10.1063/1.3554314http://dx.doi.org/10.1063/1.3554314.
SENTHIL T, VISHWANATH A, BALENTS L, et al. Deconfined quantum critical points[J]. Science, 2004, 303(5663): 1490-1494. DOI: 10.1126/science.1091806http://dx.doi.org/10.1126/science.1091806.
GUAN X, HO T L. Quantum criticality of a one-dimensional attractive Fermi gas[J]. Physical Review A, 2011, 84(2): 023616. DOI:10.1103/PhysRevA.84.023616http://dx.doi.org/10.1103/PhysRevA.84.023616.
GUAN X W, BATCHELOR M T. Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(10): 102001. DOI:10.1088/1751-8113/44/10/102001http://dx.doi.org/10.1088/1751-8113/44/10/102001.
GUAN X. Critical phenomena in one dimension from a Bethe ansatz perspective[J]. International Journal of Modern Physics B, 2014, 28(24): 1430015. DOI:10.1142/S0217979214300151http://dx.doi.org/10.1142/S0217979214300151.
YANG B, CHEN Y Y, ZHENG Y G, et al. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases[J]. Physical Review Letters, 2017, 119(16): 165701. DOI:10.1103/PhysRevLett.119.165701http://dx.doi.org/10.1103/PhysRevLett.119.165701.
BITKO D, ROSENBAUM T F, AEPPLI G. Quantum critical behavior for a model magnet[J]. Physical Review Letters, 1996, 77(5): 940-943. DOI:10.1103/PhysRevLett.77.940http://dx.doi.org/10.1103/PhysRevLett.77.940.
RÜEGG C, NORMAND B, MATSUMOTO M, et al. Quantum magnets under pressure: controlling elementary excitations in TlCuCl 3[J]. Physical Review Letters, 2008, 100(20): 205701. DOI:10.1103/PhysRevLett.100.205701http://dx.doi.org/10.1103/PhysRevLett.100.205701.
THIELEMANN B, RÜEGG C, KIEFER K, et al. Field-controlled magnetic order in the quantum spin-ladder system (Hpip) 2 CuBr 4[J]. Physical Review B, 2009, 79(2): 020408. DOI:10.1103/PhysRevB.79.020408http://dx.doi.org/10.1103/PhysRevB.79.020408.
BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases[J]. Reviews of Modern Physics, 2008, 80(3): 885-964.
CHIN C, GRIMM R, JULIENNE P, et al. Feshbach resonances in ultracold gases[J]. Reviews of Modern Physics, 2010, 82(2): 1225. DOI:10.1103/RevModPhys.82.1225http://dx.doi.org/10.1103/RevModPhys.82.1225.
GRIMM R, WEIDEMÜLLER M, OVCHINNIKOV Y B. Optical dipole traps for neutral atoms[M]//Advances in atomic, molecular, and optical physics. Academic Press, 2000, 42: 95-170. DOI:10.1016/S1049-250X(08)60186-Xhttp://dx.doi.org/10.1016/S1049-250X(08)60186-X.
BLOCH I, DALIBARD J, NASCIMBENE S. Quantum simulations with ultracold quantum gases[J]. Nature Physics, 2012, 8(4): 267-276. DOI:10.1038/nphys2259http://dx.doi.org/10.1038/nphys2259.
ZHOU Q, HO T L. Signature of quantum criticality in the density profiles of cold atom systems[J]. Physical Review Letters, 2010, 105(24): 245702. DOI:10.1103/PhysRevLett.105.245702http://dx.doi.org/10.1103/PhysRevLett.105.245702.
ZHANG X, HUNG C L, TUNG S K, et al. Observation of quantum criticality with ultracold atoms in optical lattices[J]. Science, 2012, 335(6072): 1070-1072. DOI:10.1126/science.1217990http://dx.doi.org/10.1126/science.1217990.
JIANG Y Z, CHEN Y Y, GUAN X W. Understanding many-body physics in one dimension from the Lieb-Liniger model[J]. Chinese Physics B, 2015, 24(5): 050311. DOI:10.1088/1674-1056/24/5/050311http://dx.doi.org/10.1088/1674-1056/24/5/050311.
GUAN X W, CHEN Y Y. Yang–Yang equilibrium statistical mechanics: A brilliant method[J]. International Journal of Modern Physics B, 2016, 30(9): 1630008. DOI:10.1142/S0217979216300085http://dx.doi.org/10.1142/S0217979216300085.
CHEN Y Y, WATANABE G, YU Y C, et al. An interaction-driven many-particle quantum heat engine and its universal behavior[J]. npj Quantum Information, 2019, 5(1): 88. DOI:10.1038/s41534-019-0204-5http://dx.doi.org/10.1038/s41534-019-0204-5.
ZHAI H. Ultracold Atomic Physics[M]. Cambridge: Cambridge University Press, 2021.
LIEB E H, LINIGER W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state[J]. Physical Review, 1963, 130(4): 1605-1616. DOI:10.1103/PhysRev.130.1605http://dx.doi.org/10.1103/PhysRev.130.1605.
KOREPIN V E, IZERGIN A G and BOGOLIUBOV N M. Quantum Inverse Scattering Method and Correlation Functions[M]. Cambridge: Cambridge University Press,1993. 10-15.
YANG C N, YANG C P. Thermodynamics of a one‐dimensional system of bosons with repulsive delta‐function interaction[J]. Journal of Mathematical Physics, 1969, 10(7): 1115-1122. DOI:10.1063/1.1664947http://dx.doi.org/10.1063/1.1664947.
THIERRY G. Quantum Physics in One Dimension [M]. Oxford: Oxford University Press, 2004.
HALDANE F D M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas[J]. Journal of Physics C: Solid State Physics, 1981, 14(19): 2585-2609. DOI 10.1088/0022-3719/14/19/010.
OLSHANII M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons[J]. Physical Review Letters, 1998, 81(5): 938-941. DOI:10.1103/PhysRevLett.81.938http://dx.doi.org/10.1103/PhysRevLett.81.938.
VAN AMERONGEN A H, VAN ES J J P, WICKE P, et al. Yang-Yang thermodynamics on an atom chip[J]. Physical Review Letters, 2008, 100(9): 090402. DOI:10.1103/PhysRevLett.100.090402http://dx.doi.org/10.1103/PhysRevLett.100.090402.
VOGLER A, LABOUVIE R, STUBENRAUCH F, et al. Thermodynamics of strongly correlated one-dimensional Bose gases[J]. Physical Review A, 2013, 88(3): 031603. DOI:10.1103/PhysRevA.88.031603http://dx.doi.org/10.1103/PhysRevA.88.031603.
KINOSHITA T, WENGER T, WEISS D S. Local pair correlations in one-dimensional Bose gases[J]. Physical Review Letters, 2005, 95(19): 190406. DOI:10.1103/PhysRevLett.95.190406http://dx.doi.org/10.1103/PhysRevLett.95.190406.
GUARRERA V, MUTH D, LABOUVIE R, et al. Spatiotemporal fermionization of strongly interacting one-dimensional bosons[J]. Physical Review A, 2012, 86(2): 021601. DOI:10.1103/PhysRevA.86.021601http://dx.doi.org/10.1103/PhysRevA.86.021601.
ARMIJO J, JACQMIN T, KHERUNTSYAN K V, et al. Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations[J]. Physical Review Letters, 2010, 105(23): 230402. DOI:10.1103/PhysRevLett.105.230402http://dx.doi.org/10.1103/PhysRevLett.105.230402.
TOLRA B L, O’HARA K M, HUCKANS J H, et al. Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas[J]. Physical Review Letters, 2004, 92(19): 190401. DOI:10.1103/PhysRevLett.92.190401http://dx.doi.org/10.1103/PhysRevLett.92.190401.
HALLER E, RABIE M, MARK M J, et al. Three-body correlation functions and recombination rates for bosons in three dimensions and one dimension[J]. Physical Review Letters, 2011, 107(23): 230404. DOI:10.1103/PhysRevLett.107.230404http://dx.doi.org/10.1103/PhysRevLett.107.230404.
KUHNERT M, GEIGER R, LANGEN T, et al. Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system[J]. Physical Review Letters, 2013, 110(9): 090405. DOI:10.1103/PhysRevLett.110.090405http://dx.doi.org/10.1103/PhysRevLett.110.090405.
HARROW A W, MONTANARO A. Quantum computational supremacy[J]. Nature, 2017, 549(7671): 203-209. DOI:10.1038/nature23458http://dx.doi.org/10.1038/nature23458.
BHATTACHARJEE S, DUTTA A. Quantum thermal machines and batteries[J]. The European Physical Journal B, 2021, 94: 1-42. DOI:10.1140/epjb/s10051-021-00235-3http://dx.doi.org/10.1140/epjb/s10051-021-00235-3.
QUAN H T, LIU Y, SUN C P, et al. Quantum thermodynamic cycles and quantum heat engines[J]. Physical Review E, 2007, 76(3): 031105. DOI:10.1103/PhysRevE.76.031105http://dx.doi.org/10.1103/PhysRevE.76.031105.
ROßNAGEL J, DAWKINS S T, TOLAZZI K N, et al. A single-atom heat engine[J]. Science, 2016, 352(6283): 325-329. DOI: 10.1126/science.aad632http://dx.doi.org/10.1126/science.aad632.
MASLENNIKOV G, DING S, HABLÜTZEL R, et al. Quantum absorption refrigerator with trapped ions[J]. Nature communications, 2019, 10(1): 1-8. DOI:10.1038/s41467-018-08090-0http://dx.doi.org/10.1038/s41467-018-08090-0.
CHEN J, DONG H, SUN C P. Bose-Fermi duality in a quantum Otto heat engine with trapped repulsive bosons[J]. Physical Review E, 2018, 98(6): 062119. DOI:10.1103/PhysRevE.98.062119http://dx.doi.org/10.1103/PhysRevE.98.062119.
MA Y H, SU S H, SUN C P. Quantum thermodynamic cycle with quantum phase transition[J]. Physical Review E, 2017, 96(2): 022143. DOI:10.1103/PhysRevE.96.022143http://dx.doi.org/10.1103/PhysRevE.96.022143.
ZHANG J W, ZHANG J Q, DING G Y, et al. Dynamical control of quantum heat engines using exceptional points[J]. Nature Communications, 2022, 13(1): 6225. DOI:10.1038/s41467-022-33667-1http://dx.doi.org/10.1038/s41467-022-33667-1.
HAO Y, ZHANG Y, LIANG J Q, et al. Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap[J]. Physical Review A, 2006, 73(6): 063617. DOI:10.1103/PhysRevA.73.063617http://dx.doi.org/10.1103/PhysRevA.73.063617.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构