山西大学 理论物理研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
[ "陈立,男,博士,山西大学理论物理研究所副教授,博士生导师;2006—2010年山西大学物理电子工程学院本科、2010—2013年山西大学光电研究所硕士、2014—2018年山西大学理论物理研究所博士;2016—2018年受国家留学基金委资助赴美国莱斯大学进行联合培养;2019—2021于清华大学高等研究院做博士后。主要从事超冷量子气体、机器学习算法及其在量子物理中的应用方面的理论研究。在Phys. Rev. Lett., Phys. Rev. A, Phys. Rev. B, Phys. Rev. Research,New Journal of Physics等期刊上发表多篇SCI论文;主持国家自然科学青年、面上基金多项。Email:lchen@sxu.edu.cn" ]
纸质出版日期:2023-03-25,
收稿日期:2022-12-20,
修回日期:2023-02-25,
扫 描 看 全 文
陈立,祝菲,唐正等.高能物理的超冷量子模拟[J].新兴科学和技术趋势,2023,2(1):49-69.
CHEN Li,ZHU Fei,TANG Zheng,et al.Ultracold quantum simulation of high-energy physics: lattice gauge theory and its realization in cold atoms[J].Emerging Science and Technology,2023,2(1):49-69.
陈立,祝菲,唐正等.高能物理的超冷量子模拟[J].新兴科学和技术趋势,2023,2(1):49-69. DOI: 10.12405/j.issn.2097-1486.2023.01.007.
CHEN Li,ZHU Fei,TANG Zheng,et al.Ultracold quantum simulation of high-energy physics: lattice gauge theory and its realization in cold atoms[J].Emerging Science and Technology,2023,2(1):49-69. DOI: 10.12405/j.issn.2097-1486.2023.01.007.
在现代物理学中,高能物理和冷原子、分子物理似乎有着明显的研究界限。前者通常在亚原子的尺度上,讨论高速运动的相对论性基本粒子的物理性质;而后者往往在原子或分子尺度上讨论低能、低速粒子的运动规律。那么,是否有必要,并且有可能利用超冷原子、分子来模拟高能基本粒子的物理行为是一个有趣的问题。同时,因其连接了当今物理学的两个重要且广泛的研究方向,这一问题在发掘高低能物理之间的普遍联系和拓宽物理学的研究范畴方面也蕴含着一定的潜在价值。在过去的几年中,人们已经在这个新的研究方向上做出了一系列有趣的尝试,并获得了一些可喜的进展。在这个系列文章中,我们回顾近期高能物理量子模拟的重要进展,其中包括阿贝尔和非阿贝尔规范场的量子模拟、量子场论模型的冷原子量子实现、高能模型的数字化模拟手段、方法等。因为这是一个高度交叉的领域且发展迅速,我们拟根据前沿进展和自身的研究情况,分期完成这一系列进展综述,并期望这一综述可以引起相关领域的研究者的兴趣。本文重点介绍高能物理量子模拟的研究意义和价值,并讨论阿贝尔规范场的量子模拟和冷原子实现。
In modern physics, high-energy physics, which generally discusses the physical properties of high-speed relativistic elementary particles on the subatomic scale, appears to have distinct research boundaries with cold atom and molecular physics, which often focuses on low-energy and low-speed particles on the atomic or molecular scale. Whether it is necessary or feasible to simulate high-energy elementary particles using atoms and molecules is an interesting question in physics. Meanwhile, this question has some potential values of exploring the universal connection between high-energy and low-energy physics and values of extending the range of study in physics, for it connects two wide and important research areas. In the past few years, some interesting attempts in this new research area have achieved encouraging progress. This series of papers will review recent progress on quantum simulation of high-energy physics, including synthetic Abelian and non-Abelian gauge fields, quantum implementations of quantum field theory models using cold atoms, digital simulations of high-energy models, etc. Since this is a highly interdisciplinary field and develops rapidly, we plan to complete the series of reviews in stages according to the latest research and our own progress. We hope that this review will stimulate interest in the relevant field. The current paper focuses on the motivation and significance of the quantum simulation of high-energy physics, and discusses several methods of realizing the Abelian lattice gauge theory in cold atomic systems.
量子模拟高能物理格点规范场冷原子
quantum simulationhigh-energy physicslattice gauge theorycold atoms
GUBSER S. Energy scales in physics[EB/OL]. (2023)[2023-08-17] https://phy.princeton.edu/research/high-energy-theory/gubser-group/outreach/energy-scales-in-physicshttps://phy.princeton.edu/research/high-energy-theory/gubser-group/outreach/energy-scales-in-physics.
FOOT C J. Atomic physics[M]. Oxford; New York: Oxford University Press, 2005.
SCULLY M O, ZUBAIRY M S. Quantum Optics[M]. Cambridge University Press, 1997. DOI:10.1017/CB09780511813993http://dx.doi.org/10.1017/CB09780511813993.
GRIFFITHS D J. Introduction to elementary particles[M]. 2., rev. ed., 5. reprint. Weinheim: Wiley-VCH, 2011.
PESKIN M E, SCHROEDER D V. An introduction to quantum field theory[M]. Reading, Mass: Addison-Wesley Pub. Co, 1995.
ZEE A. Quantum field theory in a nutshell[M]. 2nd ed. Princeton, N.J: Princeton University Press, 2010.
WEINBERG S. The Quantum Theory of Fields[M]. Cambridge University Press, 1995. DOI:10.1017/CBO9781139644167http://dx.doi.org/10.1017/CBO9781139644167.
GAILLARD M K, GRANNIS P D, SCIULLI F J. The standard model of particle physics[J]. Reviews of Modern Physics, 1999, 71(2): S96-S111.DOI:10.1103/RevModPhys.71.S96http://dx.doi.org/10.1103/RevModPhys.71.S96.
BURGESS C P, MOORE G D. The standard model: a primer[M]. Revised 1. ed. Cambridge: Cambridge Univ. Press, 2013.
COTTINGHAM W N, GREENWOOD D A. An introduction to the standard model of particle physics[M]. 2nd ed. Cambridge; New York: Cambridge University Press, 2007.
BULUTA I, NORI F. Quantum Simulators[J]. Science, 2009, 326(5949): 108-111. DOI:10.1126/science.1177838http://dx.doi.org/10.1126/science.1177838.
GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1): 153-185. DOI:10.1103/RevModPhys.86.153http://dx.doi.org/10.1103/RevModPhys.86.153.
HIGGS P W. Broken Symmetries and the Masses of Gauge Bosons[J]. Physical Review Letters, 1964, 13(16): 508-509. DOI:10.1103/PhysRevLett.13.508http://dx.doi.org/10.1103/PhysRevLett.13.508.
ENGLERT F, BROUT R. Broken Symmetry and the Mass of Gauge Vector Mesons[J]. Physical Review Letters, 1964, 13(9): 321-323. DOI:10.1103/PhysRevLett.13.321http://dx.doi.org/10.1103/PhysRevLett.13.321.
YUKAWA H. On the Interaction of Elementary Particles. I[M]. THE PHYSICAL SOCIETY OF JAPAN , The Mathematical Society of Japan, 1935. DOI:10.11429/ppmsj1919.17.0_48http://dx.doi.org/10.11429/ppmsj1919.17.0_48.
YANG C N, MILLS R L. Conservation of Isotopic Spin and Isotopic Gauge Invariance[J]. Physical Review, 1954, 96(1): 191-195. DOI:10.1103/PhysRev.96.191http://dx.doi.org/10.1103/PhysRev.96.191.
WEINBERG S. A Model of Leptons[J]. Physical Review Letters, 1967, 19(21): 1264-1266. DOI:10.1103/PhysRevLett.19.1264http://dx.doi.org/10.1103/PhysRevLett.19.1264.
FEYNMAN R P. QED: the strange theory of light and matter[M]. Expanded ed. Princeton, NJ: Princeton Univ. Press, 2006.
GREINER W, REINHARDT J. Quantum electrodynamics[M]. 4th ed. Berlin: Springer, 2009.
GROSS D J, WILCZEK F. Ultraviolet Behavior of Non-Abelian Gauge Theories[J]. Physical Review Letters, 1973, 30(26): 1343-1346. DOI:10.1103/PhysRevLett.30.1343http://dx.doi.org/10.1103/PhysRevLett.30.1343
POLITZER H D. Reliable Perturbative Results for Strong Interactions?[J]. Physical Review Letters, 1973, 30(26): 1346-1349. DOI:10.1103/PhysRevLett.30.1346http://dx.doi.org/10.1103/PhysRevLett.30.1346.
GREENSITE J. An Introduction to the Confinement Problem: Issue 821[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. DOI:10.1007/978-3-642-14382-3http://dx.doi.org/10.1007/978-3-642-14382-3.
KOSTERLITZ J M, THOULESS D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. Journal of Physics C: Solid State Physics, 1973, 6(7): 1181-1203. DOI:10.1088/0022-3719/6/7/010http://dx.doi.org/10.1088/0022-3719/6/7/010.
CREUTZ M. Quarks, gluons and lattices[M]. 1. paperback ed., repr. Cambridge: Cambridge Univ. Press, 1983.
DEGRAND T, DETAR C. Lattice methods for quantum chromodynamics[M]. Hackensack, NJ: World Scientific, 2006.
GATTRINGER C, LANG C B. Quantum chromodynamics on the lattice: an introductory presentation[M]. Heidelberg; New York: Springer, 2010.
Lattice quantum chromodynamics[M]. New York, NY: Springer Berlin Heidelberg, 2016.
MONTVAY I, MONTVAY I, MÜNSTER G. Quantum fields on a lattice[M]. 1. paperback edition. Cambridge: Cambridge Univ. Press, 1997.
ROTHE H J. Lattice gauge theories: an introduction[M]. 4th ed. Hackensack, N.J: World Scientific, 2012.
REBBI C. Lattice gauge theories and Monte Carlo simulations[M]. Singapore: World Scientific, 1983.
CREUTZ M, JACOBS L, REBBI C. Monte Carlo computations in lattice gauge theories[J]. Physics Reports, 1983, 95(4): 201-282. DOI:10.1016/0370-1573(83)90016-9http://dx.doi.org/10.1016/0370-1573(83)90016-9.
WILSON K G. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture[J]. Physical Review B, 1971, 4(9): 3174-3183. DOI:10.1103/PhysRevB.4.3174http://dx.doi.org/10.1103/PhysRevB.4.3174.
WILSON K G. Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior[J]. Physical Review B, 1971, 4(9): 3184-3205. DOI:10.1103/PhysRevB.4.3184http://dx.doi.org/10.1103/PhysRevB.4.3184.
WILSON K. The renormalization group and the ε expansion[J]. Physics Reports, 1974, 12(2): 75-199. DOI:10.1016/0370-1573(74)90023-4http://dx.doi.org/10.1016/0370-1573(74)90023-4.
WIESE U J, An Introduction to Lattice Field Theory [EB/OL]. Bern University, Institute of Theoretical Physics, 2009. https://inspirehep.net/literature/946884https://inspirehep.net/literature/946884.
TROYER M, WIESE U J. Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations[J]. Physical Review Letters, 2005, 94(17): 170201. DOI:10.1103/PhysRevLett.94.170201http://dx.doi.org/10.1103/PhysRevLett.94.170201.
ELITZUR S. Impossibility of spontaneously breaking local symmetries[J]. Physical Review D, 1975, 12(12): 3978-3982. DOI:10.1103/PhysRevD.12.3978http://dx.doi.org/10.1103/PhysRevD.12.3978.
Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57. DOI:10.1098/rspa.1984.0023http://dx.doi.org/10.1098/rspa.1984.0023.
AHARONOV Y, BOHM D. Significance of Electromagnetic Potentials in the Quantum Theory[J]. Physical Review, 1959, 115(3): 485-491. DOI:10.1103/PhysRev.115.485http://dx.doi.org/10.1103/PhysRev.115.485.
WILSON K G. Confinement of quarks[J]. Physical Review D, 1974, 10(8): 2445-2459. DOI:10.1103/PhysRevD.10.2445http://dx.doi.org/10.1103/PhysRevD.10.2445.
KOGUT J B. An introduction to lattice gauge theory and spin systems[J]. Reviews of Modern Physics, 1979, 51(4): 659-713. DOI:10.1103/RevModPhys.51.659http://dx.doi.org/10.1103/RevModPhys.51.659.
KOGUT J B. The lattice gauge theory approach to quantum chromodynamics[J]. Reviews of Modern Physics, 1983, 55(3): 775-836. DOI:10.1103/RevModPhys.55.775http://dx.doi.org/10.1103/RevModPhys.55.775.
KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111. DOI:10.1016/j.aop.2005.10.005http://dx.doi.org/10.1016/j.aop.2005.10.005.
WEN X G. TOPOLOGICAL ORDERS IN RIGID STATES[J]. International Journal of Modern Physics B, 1990, 04(02): 239-271. DOI:10.1142/S0217979290000139http://dx.doi.org/10.1142/S0217979290000139.
CHEN X, GU Z C, WEN X G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order[J]. Physical Review B, 2010, 82(15): 155138. DOI:10.1103/PhysRevB.82.155138http://dx.doi.org/10.1103/PhysRevB.82.155138.
WEN X G. Colloquium : Zoo of quantum-topological phases of matter[J]. Reviews of Modern Physics, 2017, 89(4): 041004. DOI:10.1103/RevModPhys.89.041004http://dx.doi.org/10.1103/RevModPhys.89.041004.
SATZINGER K J, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantum processor[J]. Science, 2021, 374(6572): 1237-1241. DOI:10.1126/science.abi8378http://dx.doi.org/10.1126/science.abi8378.
KOGUT J, SUSSKIND L. Hamiltonian formulation of Wilson’s lattice gauge theories[J]. Physical Review D, 1975, 11(2): 395-408. DOI:10.1103/PhysRevD.11.395http://dx.doi.org/10.1103/PhysRevD.11.395.
SMIT J. Introduction to quantum fields on a lattice: “a robust mate”[M]. Cambridge, UK; New York: Cambridge University Press, 2002.
NIELSEN H B, NINOMIYA M. Absence of neutrinos on a lattice[J]. Nuclear Physics B, 1981, 185(1): 20-40. DOI:10.1016/0550-3213(81)90361-8http://dx.doi.org/10.1016/0550-3213(81)90361-8.
NIELSEN H B, NINOMIYA M. Absence of neutrinos on a lattice[J]. Nuclear Physics B, 1981, 193(1): 173-194. DOI:10.1016/0550-3213(81)90524-1http://dx.doi.org/10.1016/0550-3213(81)90524-1.
FRIEDAN D. A proof of the Nielsen-Ninomiya theorem[J]. Communications in Mathematical Physics, 1982, 85(4): 481-490.
GINSPARG P H, WILSON K G. A remnant of chiral symmetry on the lattice[J]. Physical Review D, 1982, 25(10): 2649-2657. DOI:10.1103/PhysRevD.25.2649http://dx.doi.org/10.1103/PhysRevD.25.2649.
SHEIKHOLESLAMI B, WOHLERT R. Improved continuum limit lattice action for QCD with Wilson fermions[J]. Nuclear Physics B, 1985, 259(4): 572-596. DOI:10.1016/0550-3213(85)90002-1http://dx.doi.org/10.1016/0550-3213(85)90002-1.
POLYAKOV A M. Gauge Fields and Strings[M/OL]. London:Routledge, 2018. DOI:10.1201/9780203755082http://dx.doi.org/10.1201/9780203755082.
BROWER R, CHANDRASEKHARAN S, WIESE U J. QCD as a quantum link model[J]. Physical Review D, 1999, 60(9): 094502. DOI:10.1103/PhysRevD.60.094502http://dx.doi.org/10.1103/PhysRevD.60.094502.
HORN D, WEINSTEIN M, YANKIELOWICZ S. Hamiltonian approach to Z(N) lattice gauge theories[J]. Physical Review D, 1979, 19(12): 3715-3731. DOI:10.1103/PhysRevD.19.3715http://dx.doi.org/10.1103/PhysRevD.19.3715.
SCHWINGER J. Gauge Invariance and Mass. II[J]. Physical Review, 1962, 128(5): 2425-2429. DOI:10.1103/PhysRev.128.2425http://dx.doi.org/10.1103/PhysRev.128.2425.
COLEMAN S. More about the massive Schwinger model[J]. Annals of Physics, 1976, 101(1): 239-267. DOI:10.1016/0003-4916(76)90280-3http://dx.doi.org/10.1016/0003-4916(76)90280-3.
BANERJEE D, DALMONTE M, MÜLLER M, et al. Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench[J]. Physical Review Letters, 2012, 109(17): 175302. DOI:10.1103/PhysRevLett.109.175302http://dx.doi.org/10.1103/PhysRevLett.109.175302.
VERDEL R, LIU F, WHITSITT S, et al. Real-time dynamics of string breaking in quantum spin chains[J]. Physical Review B, 2020, 102(1): 014308. DOI:10.1103/PhysRevB.102.014308http://dx.doi.org/10.1103/PhysRevB.102.014308.
SVETITSKY B. Symmetry aspects of finite-temperature confinement transitions[J]. Physics Reports, 1986, 132(1): 1-53. DOI:10.1016/0370-1573(86)90014-1http://dx.doi.org/10.1016/0370-1573(86)90014-1.
BANKS T, SUSSKIND L, KOGUT J. Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises[J]. Physical Review D, 1976, 13(4): 1043-1053. DOI:10.1103/PhysRevD.13.1043http://dx.doi.org/10.1103/PhysRevD.13.1043.
EISERT J, FRIESDORF M, GOGOLIN C. Quantum many-body systems out of equilibrium[J]. Nature Physics, 2015, 11(2): 124-130.
GOGOLIN C, EISERT J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems[J]. Reports on Progress in Physics, 2016, 79(5): 056001. DOI:10.1088/0034-4885/79/5/056001http://dx.doi.org/10.1088/0034-4885/79/5/056001.
NANDKISHORE R, HUSE D A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics[J]. Annual Review of Condensed Matter Physics, 2015, 6(1): 15-38. DOI:10.1146/annurev-conmatphys-031214-014726http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726.
MORI T, IKEDA T N, KAMINISHI E, et al. Thermalization and prethermalization in isolated quantum systems: a theoretical overview[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51(11): 112001. DOI:10.1088/1361-6455/aabcdfhttp://dx.doi.org/10.1088/1361-6455/aabcdf.
ABANIN D A, ALTMAN E, BLOCH I, et al. Colloquium : Many-body localization, thermalization, and entanglement[J]. Reviews of Modern Physics, 2019, 91(2): 021001. DOI:10.1103/RevModPhys.91.021001http://dx.doi.org/10.1103/RevModPhys.91.021001.
BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J]. Nature, 2017, 551(7682): 579-584. DOI:10.1038/nature24622http://dx.doi.org/10.1038/nature24622.
TURNER C J, MICHAILIDIS A A, ABANIN D A, et al. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations[J]. Physical Review B, 2018, 98(15): 155134. DOI:10.1103/PhysRevB.98.155134http://dx.doi.org/10.1103/PhysRevB.98.155134.
TURNER C J, MICHAILIDIS A A, ABANIN D A, et al. Weak ergodicity breaking from quantum many-body scars[J]. Nature Physics, 2018, 14(7): 745-749. DOI:10.1038/s41567-018-0137-5http://dx.doi.org/10.1038/s41567-018-0137-5.
SERBYN M, ABANIN D A, PAPIĆ Z. Quantum many-body scars and weak breaking of ergodicity[J]. Nature Physics, 2021, 17(6): 675-685. DOI:10.1038/s41567-021-01230-2http://dx.doi.org/10.1038/s41567-021-01230-2.
HEYL M, POLKOVNIKOV A, KEHREIN S. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model[J]. Physical Review Letters, 2013, 110(13): 135704. DOI:10.1103/PhysRevLett.110.135704http://dx.doi.org/10.1103/PhysRevLett.110.135704.
HEYL M. Dynamical quantum phase transitions: a review[J]. Reports on Progress in Physics, 2018, 81(5): 054001. DOI:10.1088/1361-6633/aaaf9ahttp://dx.doi.org/10.1088/1361-6633/aaaf9a.
ZVYAGIN A A. Dynamical quantum phase transitions (Review Article)[J]. Low Temperature Physics, 2016, 42(11): 971-994. DOI:10.1063/1.4969869http://dx.doi.org/10.1063/1.4969869.
DEUTSCH J M. Eigenstate thermalization hypothesis[J]. Reports on Progress in Physics, 2018, 81(8): 082001. DOI:10.1088/1361-6633/aac9f1http://dx.doi.org/10.1088/1361-6633/aac9f1.
RIGOL M, SREDNICKI M. Alternatives to Eigenstate Thermalization[J]. Physical Review Letters, 2012, 108(11): 110601. DOI:10.1103/PhysRevLett.108.110601http://dx.doi.org/10.1103/PhysRevLett.108.110601.
RIGOL M, DUNJKO V, OLSHANII M. Thermalization and its mechanism for generic isolated quantum systems[J]. Nature, 2008, 452(7189): 854-858. DOI:10.1038/nature06838http://dx.doi.org/10.1038/nature06838.
DOIKOU A, EVANGELISTI S, FEVERATI G, et al. INTRODUCTION TO QUANTUM INTEGRABILITY[J]. International Journal of Modern Physics A, 2010, 25(17): 3307-3351. DOI:10.1142/S0217751X10049803http://dx.doi.org/10.1142/S0217751X10049803.
BRACKEN P. Classical and Quantum Integrability: A Formulation That Admits Quantum Chaos[M]. BRACKEN P, I. UZUNOV D. A Collection of Papers on Chaos Theory and Its Applications. IntechOpen, 2021. DOI:10.5772/intechopen.94491http://dx.doi.org/10.5772/intechopen.94491.
SMITH A, KNOLLE J, KOVRIZHIN D L, et al. Disorder-Free Localization[J]. Physical Review Letters, 2017, 118(26): 266601. DOI:10.1103/PhysRevLett.118.266601http://dx.doi.org/10.1103/PhysRevLett.118.266601.
BRENES M, DALMONTE M, HEYL M, et al. Many-Body Localization Dynamics from Gauge Invariance[J]. Physical Review Letters, 2018, 120(3): 030601. DOI:10.1103/PhysRevLett.120.030601http://dx.doi.org/10.1103/PhysRevLett.120.030601.
GAO C, TANG Z, ZHU F, et al. Nonthermal dynamics in a spin-1/2 lattice Schwinger model[J]. Physical Review B, 2023, 107(10): 104302. DOI:10.1103/PhysRevB.107.104302http://dx.doi.org/10.1103/PhysRevB.107.104302.
GAO C, LIU J, CHANG M, et al. Synthetic U(1) gauge invariance in a spin-1 Bose gas[J]. Physical Review Research, 2022, 4(4): L042018. DOI:10.1103/PhysRevResearch.4.L042018http://dx.doi.org/10.1103/PhysRevResearch.4.L042018.
KARPOV P, VERDEL R, HUANG Y P, et al. Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory[J]. Physical Review Letters, 2021, 126(13): 130401. DOI:10.1103/PhysRevLett.126.130401http://dx.doi.org/10.1103/PhysRevLett.126.130401.
OSBORNE J, MCCULLOCH I P, HALIMEH J C. Disorder-Free Localization in 2+1D Lattice Gauge Theories with Dynamical Matter[J]. 2023. DOI:10.48550/ARXIV.2301.07720http://dx.doi.org/10.48550/ARXIV.2301.07720.
CHAKRAABORTY N, HEYL M, KARPOV P, et al. Disorder-free localization transition in a two-dimensional lattice gauge theory[J]. Physical Review B, 2023, 106(6): L060308. DOI: 10.1103/PhysRevB.106.L060308http://dx.doi.org/10.1103/PhysRevB.106.L060308.
FENDLEY P, SENGUPTA K, SACHDEV S. Competing density-wave orders in a one-dimensional hard-boson model[J]. Physical Review B, 2004, 69(7): 075106. DOI:10.1103/PhysRevB.69.075106http://dx.doi.org/10.1103/PhysRevB.69.075106.
SURACE F M, MAZZA P P, GIUDICI G, et al. Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators[J]. Physical Review X, 2020, 10(2): 021041. DOI:10.1103/PhysRevX.10.021041http://dx.doi.org/10.1103/PhysRevX.10.021041.
CHENG Y, LIU S, ZHENG W, et al. Tunable Confinement-Deconfinement Transition in an Ultracold-Atom Quantum Simulator[J]. PRX Quantum, 2022, 3(4): 040317. DOI:10.1103/PRXQuantum.3.040317http://dx.doi.org/10.1103/PRXQuantum.3.040317.
ARAMTHOTTIL A S, BHATTACHARYA U, GONZÁLEZ-CUADRA D, et al. Scar states in deconfined Z 2 lattice gauge theories[J]. Physical Review B, 2022, 106(4): L041101. DOI:10.1103/PhysRevB.106.L041101http://dx.doi.org/10.1103/PhysRevB.106.L041101.
BANERJEE D, SEN A. Quantum Scars from Zero Modes in an Abelian Lattice Gauge Theory on Ladders[J]. Physical Review Letters, 2021, 126(22): 220601. DOI:10.1103/PhysRevLett.126.220601http://dx.doi.org/10.1103/PhysRevLett.126.220601.
HASHIZUME T, HALIMEH J, HAUKE P, et al. Ground-state phase diagram of quantum link electrodynamics in (2+1)-d[J]. SciPost Physics, 2022, 13(2): 017. DOI:10.21468/SciPostPhys.13.2.017http://dx.doi.org/10.21468/SciPostPhys.13.2.017.
CELI A, VERMERSCH B, VIYUELA O, et al. Emerging Two-Dimensional Gauge Theories in Rydberg Configurable Arrays[J]. Physical Review X, 2020, 10(2): 021057. DOI:10.1103/PhysRevX.10.021057http://dx.doi.org/10.1103/PhysRevX.10.021057.
TARABUNGA P S, SURACE F M, ANDREONI R, et al. Gauge-Theoretic Origin of Rydberg Quantum Spin Liquids[J]. Physical Review Letters, 2022, 129(19): 195301. DOI:10.1103/PhysRevLett.129.195301http://dx.doi.org/10.1103/PhysRevLett.129.195301.
ZHOU Z, YAN Z, LIU C, et al. Quantum simulation of two-dimensional U(1) gauge theory in Rydberg atom arrays[M/OL]. arXiv, 2022. DOI:10.48550/arXiv.2212.10863http://dx.doi.org/10.48550/arXiv.2212.10863.
YANG C N, LEE T D. Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation[J]. Physical Review, 1952, 87(3): 404-409. DOI:10.1103/PhysRev.87.404http://dx.doi.org/10.1103/PhysRev.87.404.
LEE T D, YANG C N. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model[J]. Physical Review, 1952, 87(3): 410-419. DOI:10.1103/PhysRev.87.410http://dx.doi.org/10.1103/PhysRev.87.410.
FISHER M E, The Nature of Critical Points, In Lecture Notes in Theoretical Physics[M], edited by W. E. Brittin, University of Colorado Press, 1965.
VAN DAMME M, ZACHE T V, BANERJEE D, et al. Dynamical quantum phase transitions in spin- SU(1) quantum link models[J]. Physical Review B, 2022, 106(24): 245110. DOI:10.1103/PhysRevB.106.245110http://dx.doi.org/10.1103/PhysRevB.106.245110.
HUANG Y P, BANERJEE D, HEYL M. Dynamical Quantum Phase Transitions in U(1) Quantum Link Models[J]. Physical Review Letters, 2019, 122(25): 250401. DOI:10.1103/PhysRevLett.122.250401http://dx.doi.org/10.1103/PhysRevLett.122.250401.
ZOHAR E, CIRAC J I, REZNIK B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices[J]. Reports on Progress in Physics, 2016, 79(1): 014401. DOI:10.1088/0034-4885/79/1/014401http://dx.doi.org/10.1088/0034-4885/79/1/014401.
YANG B, SUN H, OTT R, et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator[J]. Nature, 2020, 587(7834): 392-396. DOI:10.1038/s41586-020-2910-8http://dx.doi.org/10.1038/s41586-020-2910-8.
ZOHAR E, REZNIK B. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms[J]. Physical Review Letters, 2011, 107(27): 275301. DOI:10.1103/PhysRevLett.107.275301http://dx.doi.org/10.1103/PhysRevLett.107.275301.
DAI H N, YANG B, REINGRUBER A, et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian[J]. Nature Physics, 2017, 13(12): 1195-1200. DOI:10.1038/nphys4243http://dx.doi.org/10.1038/nphys4243.
ZOHAR E, BURRELLO M. Formulation of lattice gauge theories for quantum simulations[J]. Physical Review D, 2015, 91(5): 054506. DOI:10.1103/PhysRevD.91.054506http://dx.doi.org/10.1103/PhysRevD.91.054506.
MIL A, ZACHE T V, HEGDE A, et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures[J]. Science, 2020, 367(6482): 1128-1130. DOI:10.1126/science.aaz5312http://dx.doi.org/10.1126/science.aaz5312.
HO T L. Spinor Bose Condensates in Optical Traps[J]. Physical Review Letters, 1998, 81(4): 742-745. DOI:10.1103/PhysRevLett.81.742http://dx.doi.org/10.1103/PhysRevLett.81.742.
SCHMITT M, HEYL M. Quantum dynamics in transverse-field Ising models from classical networks[J]. SciPost Physics, 2018, 4(2): 013. DOI:10.21468/SciPostPhys.4.2.013http://dx.doi.org/10.21468/SciPostPhys.4.2.013.
LUO D, CARLEO G, CLARK B K, et al. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories[J]. Physical Review Letters, 2021, 127(27): 276402. DOI:10.1103/PhysRevLett.127.276402http://dx.doi.org/10.1103/PhysRevLett.127.276402.
IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two[EB/OL]. (2022)[2023-08-17]. https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Twohttps://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构