1.南方科技大学量子科学与工程研究院,广东 深圳 518055
2.国际量子研究院,广东 深圳 518048
3.广东省量子科学与工程重点实验室,南方科技大学,广东 深圳 518055
[ "姚娟,女,助理研究员。2017年于香港大学完成博士学位,之后加入清华大学高等研究院继续从事博士后工作的研究,2019年入职深圳市鹏城实验室,2020年加入南方科技大学量子科学与工程研究院。其先后涉足冷原子量子模拟相关的多体、少体物理问题,机器学习算法和量子物理相结合等多个方面研究,目前主要从事量子模拟与量子机器学习方面的理论研究工作。截至目前为止发表文章11篇,参与专著编写一部。主持完成国家自然科学基金青年科学基金项目。E-mail:yaoj3@sustech.edu.cn" ]
纸质出版日期:2023-03-25,
收稿日期:2023-01-20,
修回日期:2023-02-25,
扫 描 看 全 文
姚娟.主动学习算法在量子物理中的应用[J].新兴科学和技术趋势,2023,2(1):41-48.
YAO Juan.Active learning algorithm applied in quantum physics[J].Emerging Science and Technology,2023,2(1):41-48.
姚娟.主动学习算法在量子物理中的应用[J].新兴科学和技术趋势,2023,2(1):41-48. DOI: 10.12405/j.issn.2097-1486.2023.01.006.
YAO Juan.Active learning algorithm applied in quantum physics[J].Emerging Science and Technology,2023,2(1):41-48. DOI: 10.12405/j.issn.2097-1486.2023.01.006.
主动学习方法作为一种能够自主选择数据样本的机器学习算法,在处理量子物理问题中有着诸多应用。通过“Query by committee(QBC)”的主动学习策略对训练数据进行动态扩充,从而在样本数据较少的情况下,可以有效提高训练模型的表现性能。针对量子物理中数据获取困难的特征,使用主动学习算法优化数据组成结构,为模型的训练提供有效信息,提高模型训练表现性能。通过介绍在多维函数拟合以及优化两类量子物理问题中应用实例,体现主动学习算法在处理此类量子物理问题的可行性和优越性。
Active learning method, as a machine learning algorithm which can automatically selects data samples, has many applications in solving quantum physics problems. The “query by committee” strategy adopted by active learning method can extend the training dataset dynamically. It improves the performance of the training model effectively even with a small training dataset. In reaction to the difficulty of obtaining data points in quantum physics, active learning algorithm optimizes the structure of the training dataset, providing efficient information for model training. The application in quantum physics of multidimensional function fitting and optimization demonstrated the feasibility and superiority of active learning algorithms in solving quantum physics problems.
主动学习算法量子物理拟合优化
active learning algorithmquantum physicsfitting and optimization
SETTLES B. Active Learning[M/OL]. Cham: Springer International Publishing, 2012[2023-08-29]. https://link.springer.com/10.1007/978-3-031-01560-1https://link.springer.com/10.1007/978-3-031-01560-1.
YAO J,WU Y,KOO J,et al. Active learning algorithm for computational physics[J]. Physical Review Research,2020,2(1):013287. DOI:10.1103/PhysRevResearch.2.013287http://dx.doi.org/10.1103/PhysRevResearch.2.013287.
LANGE H,KEBRIČ M,BUSER M,et al. Adaptive Quantum State Tomography with Active Learning[M/OL]. arXiv,2023[2023-08-29]. http://arxiv.org/abs/2203.15719http://arxiv.org/abs/2203.15719.
QIU Y,ZHUANG M,HUANG J,et al. Bayesian Phase Estimation via Active Learning[M/OL]. arXiv,2021[2023-08-29]. http://arxiv.org/abs/2107.00196http://arxiv.org/abs/2107.00196.
DING Y,MARTÍN-GUERRERO J D,SANZ M,et al. Retrieving Quantum Information with Active Learning[J]. Physical Review Letters,2020,124(14):140504. DOI:10.1103/PhysRevLett.124.140504http://dx.doi.org/10.1103/PhysRevLett.124.140504.
DING Y,MARTÍN-GUERRERO J D,SONG Y,et al. Active learning for the optimal design of multinomial classification in physics[J]. Physical Review Research,2022,4(1):013213. DOI:10.1103/PhysRevResearch.4.013213http://dx.doi.org/10.1103/PhysRevResearch.4.013213.
DUTT A,PEDNAULT E,WU C W,et al. Active learning of quantum system Hamiltonians yields query advantage[J/OL]. Physical Review Research,2023,5(3): 033060[2023-08-29]. https://link.aps.org/doi/10.1103/PhysRevResearch.5.033060https://link.aps.org/doi/10.1103/PhysRevResearch.5.033060.
ZHU R,PIKE-BURKE C,MINTERT F. Active Learning for Quantum Mechanical Measurements[J/OL]. 2022[2023-08-29]. https://arxiv.org/abs/2212.07513https://arxiv.org/abs/2212.07513.
DING C,XU X Y,NIU Y F,et al. Active Learning on a Programmable Photonic Quantum Processor[J/OL]. 2022[2023-08-29]. https://arxiv.org/abs/2208.02104https://arxiv.org/abs/2208.02104.
WU Y,MENG Z,WEN K,et al. Active Learning Approach to Optimization of Experimental Control*[J]. Chinese Physics Letters,2020,37(10):103201. DOI:10.1088/0256-307X/37/10/103201http://dx.doi.org/10.1088/0256-307X/37/10/103201.
CHEN L,LIANG X,ZHAI H. The Bayesian Committee Approach for Computational Physics Problems[J/OL]. 2020[2023-08-29]. https://arxiv.org/abs/2011.06086https://arxiv.org/abs/2011.06086.
HE Z, LI L, ZHENG S, et al. Quantum speedup for pool-based active learning[J]. Quantum Information Processing,2019,18(11):345. DOI:10.1007/s11128-019-2460-xhttp://dx.doi.org/10.1007/s11128-019-2460-x.
CASARES P A M,MARTIN-DELGADO M A. A quantum active learning algorithm for sampling against adversarial attacks[J]. New Journal of Physics,2020,22(7):073026. DOI:10.1088/1367-2630/ab976fhttp://dx.doi.org/10.1088/1367-2630/ab976f.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构