山西大学理论物理研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
[ "温新建,男,教授;博士,博士生导师;目前主要从事中高能核物理领域中子星物质性质和极端条件下量子色动力学相结构的理论研究工作;主持完成国家和省部级项目5项,在Phys Rev C, Phys Rev D, Phys Lett B等期刊发表SCI论文40余篇;曾获山西省“三晋英才”(青年优秀人才)支持计划。Email:wenxj@sxu.edu.cn" ]
纸质出版日期:2023-03-25,
收稿日期:2022-12-25,
修回日期:2023-02-20,
扫 描 看 全 文
温新建.极端条件下的致密物质相[J].新兴科学和技术趋势,2023,2(1):34-40.
WEN Xinjian.The dense matter under extreme condition in the Universe[J].Emerging Science and Technology,2023,2(1):34-40.
温新建.极端条件下的致密物质相[J].新兴科学和技术趋势,2023,2(1):34-40. DOI: 10.12405/j.issn.2097-1486.2023.01.005.
WEN Xinjian.The dense matter under extreme condition in the Universe[J].Emerging Science and Technology,2023,2(1):34-40. DOI: 10.12405/j.issn.2097-1486.2023.01.005.
粒子物理标准模型的强相互作用基本理论表明,在极端致密条件下可以形成特殊的物质相——致密核物质和夸克胶子等离子体(Quark-Gluon Plasma,QGP)或夸克物质。冷密核物质是构成致密天体——中子星的重要成分,而寻找被认为是大爆炸模型中早期宇宙所处的状态的热密量子色动力学(Quantum Chromodaynamics,QCD)物质——QGP,是目前重离子碰撞实验的重要目标之一。笔者简要回顾了致密物质相的微观描述方法和实验室探测,由核物质相到QGP相变的研究会使人们更加深入理解强相互作用的基本理论。
As the basic theory of the strong interaction of the standard model of particle physics, Quantum Chromodynamics (QCD) shows that the special phases of matter, namely dense nuclear matter and Quark-Gluon Plasma(QGP) or quark matter, can be formed under extremely dense conditions. Cold dense nuclear matter is an important component of compact objects, neutron stars. As a hot dense QCD material, QGP is considered to be the state of the early universe in the Big Bang model. It is one of the main targets of the heavy ion collision experiments. In this paper, we briefly review the microscopic description and the laboratory detection of dense matter phases. The study of the phase transition from nuclear matter phase to QGP provides a deeper understanding of the fundamental theory of strong interaction.
核物质夸克胶子等离子体中子星重离子碰撞实验
nuclear matterquark gluon plasmaneutron starheavy ion collision experiment
HAENSEL P, POTEKHIN A Y, YAKOVLEV D G. Neutron stars. 1: Eqation of state and structure[M]. New York:Springer, 2007. ISBN : 978-0-387-33543-8.
HELL T, WEISE W. Dense baryonic matter: Constraints from recent neutron star observations[J]. Physical Review C, 2014, 90(4): 045801. DOI:10.1103/PhysRevC.90.045801http://dx.doi.org/10.1103/PhysRevC.90.045801.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Multi-messenger Observations of a Binary Neutron Star Merger[J]. The Astrophysical Journal, 2017, 848(2): L12. DOI:10.3847/2041-8213/aa91c9http://dx.doi.org/10.3847/2041-8213/aa91c9.
HOTOKEZAKA K, KYUTOKU K, OKAWA H, et al. Binary neutron star mergers: Dependence on the nuclear equation of state[J]. Physical Review D, 2011, 83(12): 124008. DOI:10.1103/PhysRevD.83.124008http://dx.doi.org/10.1103/PhysRevD.83.124008.
TAKAMI K, REZZOLLA L, BAIOTTI L. Constraining the Equation of State of Neutron Stars from Binary Mergers[J]. Physical Review Letters, 2014, 113(9): 091104. DOI:10.1103/PhysRevLett.113.091104http://dx.doi.org/10.1103/PhysRevLett.113.091104.
BAIOTTI L, REZZOLLA L. Binary neutron star mergers: a review of Einstein’s richest laboratory[J]. Reports on Progress in Physics, 2017 Sep;80(9):096901. DOI:10.1088/1361-6633/aa67bbhttp://dx.doi.org/10.1088/1361-6633/aa67bb.
ABBOTT B P, ABBOTT R, ABBOTT T D,et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries[J]. Physical Review Letters, 2016, 116(13): 131103. DOI:10.1103/PhysRevLett.116.131103http://dx.doi.org/10.1103/PhysRevLett.116.131103.
ACERNESE F, AGATHOS M, AGATSUMA K,et al. Advanced Virgo: a 2nd generation interferometric gravitational wave detector[J]. Quantum Grav,2015,32(2):024001. DOI:10.1088/0264-9381/32/2/024001http://dx.doi.org/10.1088/0264-9381/32/2/024001.
HOUGH J, MEERS B J, NEWTON G P, et al. Proposal for a Joint German-British interferometric gravitational wave detector[EB/OL]. (1989)[2023-02-18]. http://eprints.gla.ac.uk/114852/7/114852.pdfhttp://eprints.gla.ac.uk/114852/7/114852.pdf.
ASO Y, MICHIMURA Y, SOMIYA K, et al. Interferometer design of the KAGRA gravitational wave detector[J]. Physical Review D, 2013, 88(4): 043007. DOI:10.1103/PhysRevD.88.043007http://dx.doi.org/10.1103/PhysRevD.88.043007.
MCLAUGHLIN M A.The International Pulsar Timing Array: A Galactic Scale Gravitational Wave Observatory[J]. Relativ Gravit,2014, 46: 1810 . DOI:10.48550/ARXIV.1409.4579http://dx.doi.org/10.48550/ARXIV.1409.4579.
FONSECA E, PENNUCCI T T, ELLIS J A, et al. The Nanograv Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars[J]. The Astrophysical Journal, 2016, 832(2): 167. DOI:10.3847/0004-637X/832/2/167http://dx.doi.org/10.3847/0004-637X/832/2/167.
ANTONIADIS J, FREIRE P C C, WEX N, et al. A Massive Pulsar in a Compact Relativistic Binary[J]. Science, 2013, 340(6131): 1233232. DOI:10.1126/science.1233232http://dx.doi.org/10.1126/science.1233232.
FUKUSHIMA K, HATSUDA T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 2010,74:014001. DOI:10.48550/ARXIV.1005.4814http://dx.doi.org/10.48550/ARXIV.1005.4814.
BURROWS A, LATTIMER J M. The birth of neutron stars[J]. The Astrophysical Journal, 1986, 307: 178. DOI:10.1086/164405http://dx.doi.org/10.1086/164405.
MORALES J, PANDHARIPANDE V R, RAVENHALL D G. Improved variational calculations of nucleon matter[J]. Physical Review C, 2002, 66(5): 054308. DOI:10.1103/PhysRevC.66.054308http://dx.doi.org/10.1103/PhysRevC.66.054308.
CARLSON J, GANDOLFI S, PEDERIVA F, et al. Quantum Monte Carlo methods for nuclear physics[J]. Reviews of Modern Physics,2014,87: 1067-118. DOI:10.48550/ARXIV.1412.3081http://dx.doi.org/10.48550/ARXIV.1412.3081.
GANDOLFI S, CARLSON J, REDDY S. Maximum mass and radius of neutron stars, and the nuclear symmetry energy[J]. Physical Review C, 2012, 85(3): 032801. DOI:10.1103/PhysRevC.85.032801http://dx.doi.org/10.1103/PhysRevC.85.032801.
CAI B J, CHEN L W. Nuclear matter fourth-order symmetry energy in the relativistic mean field models[J]. Physical Review C, 2012, 85(2): 024302. DOI:10.1103/PhysRevC.85.024302http://dx.doi.org/10.1103/PhysRevC.85.024302.
WITTEN E. Cosmic separation of phases[J]. Physical Review D, 1984, 30(2): 272-285. DOI:10.1103/PhysRevD.30.272http://dx.doi.org/10.1103/PhysRevD.30.272.
PETHICK C J, SCHAEFER T, SCHWENK A. Bose-Einstein condensates in neutron stars[J/OL]. 2015[2023-07-16]. https://arxiv.org/abs/1507.05839https://arxiv.org/abs/1507.05839. DOI:10.48550/ARXIV.1507.05839http://dx.doi.org/10.48550/ARXIV.1507.05839.
PANDHARIPANDE V R, PETHICK C J, THORSSON V. Kaon Energies in Dense Matter[J]. Physical Review Letters, 1995, 75(25): 4567-4570. DOI:10.1103/PhysRevLett.75.4567http://dx.doi.org/10.1103/PhysRevLett.75.4567.
GLENDENNING N K. Vacuum polarization effects on nuclear matter and neutron stars[J]. Nuclear Physics A, 1989, 493(3-4): 521-548. DOI:10.1016/0375-9474(89)90101-2http://dx.doi.org/10.1016/0375-9474(89)90101-2.
ÐAPO H, SCHAEFER B J, WAMBACH J. Appearance of hyperons in neutron stars[J]. Physical Review C, 2010, 81(3): 035803. DOI:10.1103/PhysRevC.81.035803http://dx.doi.org/10.1103/PhysRevC.81.035803.
LONARDONI D, LOVATO A, GANDOLFI S, et al. Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations[J]. Physical Review Letters, 2015, 114(9): 092301. DOI:10.1103/PhysRevLett.114.092301http://dx.doi.org/10.1103/PhysRevLett.114.092301.
UKAWA A. Kenneth Wilson and lattice QCD[J]. Journal of Statistical Physics,2015,160(5):1081-1124. DOI:10.48550/ARXIV.1501.04215http://dx.doi.org/10.48550/ARXIV.1501.04215.
BAYM G, HATSUDA T, KOJO T, et al. From hadrons to quarks in neutron stars: a review[J]. Reports on Progress in Physics, 2018, 81(5): 056902. DOI:10.1088/1361-6633/aaae14http://dx.doi.org/10.1088/1361-6633/aaae14.
BAYM G. Confinement of quarks in nuclear matter[J]. Physica A: Statistical Mechanics and its Applications, 1979, 96(1-2): 131-135. DOI:10.1016/0378-4371(79)90200-0http://dx.doi.org/10.1016/0378-4371(79)90200-0.
ÇELIK T, KARSCH F, SATZ H. A percolation approach to strongly interacting matter[J]. Physics Letters B, 1980, 97(1): 128-130. DOI:10.1016/0370-2693(80)90564-Xhttp://dx.doi.org/10.1016/0370-2693(80)90564-X.
SAHOO P, TIWARI S K, SAHOO R. Electrical conductivity of hot and dense QCD matter created in heavy-ion collisions: A color string percolation approach[J]. Physical Review D, 2018, 98(5): 054005. DOI:10.1103/PhysRevD.98.054005http://dx.doi.org/10.1103/PhysRevD.98.054005.
NERI F, GOCKSCH A. Chiral-symmetry restoration in large- N quantum chromodynamics at finite temperature[J]. Physical Review D, 1983, 28(12): 3147-3148. DOI:10.1103/PhysRevD.28.3147http://dx.doi.org/10.1103/PhysRevD.28.3147.
NAMBU Y, JONA-LASINIO G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity[J]. Physical Review, 1961, 122(1): 345-358. DOI:10.1103/PhysRev.122.345http://dx.doi.org/10.1103/PhysRev.122.345.
ALFORD M G, SCHMITT A, RAJAGOPAL K, et al. Color superconductivity in dense quark matter[J]. Reviews of Modern Physics, 2008, 80(4): 1455-1515. DOI:10.1103/RevModPhys.80.1455http://dx.doi.org/10.1103/RevModPhys.80.1455.
SON D T, STEPHANOV M A. Inverse meson mass ordering in the color-flavor-locking phase of high-density QCD[J]. Physical Review D, 2000, 61(7): 074012. DOI:10.1103/PhysRevD.61.074012http://dx.doi.org/10.1103/PhysRevD.61.074012.
DETAR C. Conjecture concerning the modes of excitation of the quark-gluon plasma[J]. Physical Review D, 1985, 32(1): 276-283. DOI:10.1103/PhysRevD.32.276http://dx.doi.org/10.1103/PhysRevD.32.276.
PISARSKI R D. Quark-gluon plasma as a condensate of Z (3) Wilson lines[J]. Physical Review D, 2000, 62(11): 111501. DOI:10.1103/PhysRevD.62.111501http://dx.doi.org/10.1103/PhysRevD.62.111501.
FUKUSHIMA K, KOJO T. The quarkyonic star[J]. The Astrophysical Journal, 2016, 817(2): 180. DOI:10.3847/0004-637X/817/2/180http://dx.doi.org/10.3847/0004-637X/817/2/180.
SHURYAK E V. Quantum chromodynamics and the theory of superdense matter[J]. Physics Reports, 1980, 61(2): 71-158. DOI:10.1016/0370-1573(80)90105-2http://dx.doi.org/10.1016/0370-1573(80)90105-2.
MATSUI T, SATZ H. J/ψ suppression by quark-gluon plasma formation[J]. Physics Letters B, 1986, 178(4): 416-422. DOI:10.1016/0370-2693(86)91404-8http://dx.doi.org/10.1016/0370-2693(86)91404-8.
SATZ H. The Quark-Gluon Plasma – A Short Introduction[J]. Nuclear Physics A, 2011, 862-863: 4-12. DOI:10.1016/j.nuclphysa.2011.05.014http://dx.doi.org/10.1016/j.nuclphysa.2011.05.014.
SCHIFF D. Propagation of Energetic Partons in Matter[J]. Acta Physica Polonica B,1999 ,30(12):3621.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构