浏览全部资源
扫码关注微信
山西大学 黄土高原研究所,山西 太原 030006
[ "刘晋仙,女,副教授,硕士生导师;主要从事水体、湿地微生物生态相关的研究工作;主要研究方向是黄河流域水体环境生物多样性保护,植物微生物组对水体污染物去除及其修复的生态学机制和应对措施;主持并参与多项国家自然科学基金,发表重要学术论文20余篇。" ]
[ "柴宝峰,男,教授,博士生导师;主要从事微生物生态学方面的教学和研究;第十二届山西省政协委员,任中国原生动物学会理事;山西省学术技术带头人,黄土高原生态修复山西省重点实验室主任、山西大学生态学学科带头人;主持完成国家自然科学基金6项、国家发改委清洁发展基金赠款项目、教育部博士点基金、山西省科技攻关项目、留学基金重点项目及山西省重点研发计划重点项目等20余项;曾先后赴丹麦、美国、英国访问留学;获山西省科学技术奖自然科学类二等奖3项,专利5项;在学术刊物上发表论文100余篇,SCI论文40余篇;获2018年“山西省高校杰出学术成就奖”;2019年,入选山西省“三晋英才”支持计划拔尖骨干人才。" ]
纸质出版日期:2022-12,
收稿日期:2022-10-22,
修回日期:2022-11-20,
移动端阅览
刘晋仙, 李倩茹, 苏嘉贺, 等. 山地湖泊微生物群落对季节性冻融的适应性分析[J]. 新兴科学和技术趋势, 2022,1(2):204-209.
LIU Jinxian, LI Qianru, SU Jiahe, et al. Effects of seasonal freeze-thaw on microbial communities in mountain lakes. [J]. Emerging Science and Technology, 2022,1(2):204-209.
刘晋仙, 李倩茹, 苏嘉贺, 等. 山地湖泊微生物群落对季节性冻融的适应性分析[J]. 新兴科学和技术趋势, 2022,1(2):204-209. DOI: 10.12405/j.issn.2097-1486.2022.02.007.
LIU Jinxian, LI Qianru, SU Jiahe, et al. Effects of seasonal freeze-thaw on microbial communities in mountain lakes. [J]. Emerging Science and Technology, 2022,1(2):204-209. DOI: 10.12405/j.issn.2097-1486.2022.02.007.
季节性冻融是北温带山地湖泊最为明显的环境变化之一。本文通过分析气候变化与季节性冻融的联系,季节冻融过程中冰盖厚度和温度变化对湖泊生态系统的影响,不同微生物群落包括:细菌、真菌和原生生物对季节性冻融过程的适应性;探讨了季节性冻融对不同微生物群落的影响程度,明确了细菌群落在湖泊冻融过程中的变化更显著,是指示气候变化的理想生物指标。表明不同微生物群落对冻融过程的适应性不同,最终对山地湖泊的物质循环和能量转换产生影响。
Seasonal freeze-thaw is one of the most obvious environmental changes in mountain lakes in the north temperate zone. This paper analyzed the relationship between climate change and seasonal freeze-thaw
the impact of ice cover thickness and temperature changes on lake ecosystem during seasonal freeze-thaw
and the adaptability of bacteria
fungi and protist to seasonal freeze-thaw process. The paper also discussed the influence of seasonal freezing and thawing on different microbial communities. It is clear that the bacterial community changes more significantly during the freeze-thaw process of lakes
and is an ideal biological indicator of climate change. It shows that different microbial communities have different adaptability to the freeze-thaw process
and ultimately have an impact on the material cycle and energy conversion of mountain lakes.
微生物季节性冻融山地湖泊气候变化
microorganismseasonal freeze-thawmountain lakesclimate change
SALONEN K, LEPPÄRANTA M, VILJANEN M, et al. Perspectives in winter limnology: closing the annual cycle of freezing lakes[J]. Aquatic Ecology. 2009, 43(3):609-616.
STEINGRUBER SM, BERNASCONI SM, VALENTI G, et al. Climate change-induced changes in the chemistry of a high-altitude mountain lake in the central Alps[J]. Aquatic Geochemistry. 2021, 27(2):105-126.
CAYAN DR, KAMMERDIENER SA, DETTINGER MD, et al. Changes in the onset of spring in the western United States[J]. Bulletin of the American Meteorological Society. 2001, 82(3):399-415.
AUSTIN JA, COLMAN SM, et al. Lake superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback[J]. Geophysical Research Letters. 2007, 34(6):.L06604-n/a.
AUSTIN J, COLMAN S, et al. A century of temperature variability in Lake Superior[J]. Limnology and Oceanography. 2008, 53(6):2724-2730.
ADRIAN R, O′REILLY CM, ZAGARESE H, et al. Lakes as sentinels of climate change[J]. Limnology and Oceanography. 2009, 54(6):2283-2297.
POWERS SM, LABOU SG, BAULCH HM, et al. Ice duration drives winter nitrate accumulation in north temperate lakes[J]. Limnology and Oceanography Letters. 2017, 2(5):177-186.
WANG J, BAI X, HU H, et al. Temporal and spatial variability of Great Lakes ice cover, 1973-2010[J]. Journal of Climate. 2011, 25(4):1318-1329.
BEALL BFN, TWISS MR, SMITH DE, et al. Ice cover extent drives phytoplankton- and bacterial community structure in a large north-temperate lake: Implications for a warming climate[J]. Environmental Microbiology. 2016, 18(6):1704-1719.
邓建明, 秦伯强.全球变暖对淡水湖泊浮游植物影响研究进展[J].湖泊科学.2015,27(1):1-10.
GUO X, POTITO AP, LUO L, et al. Twentieth century human and climate impacts on a large mountain lake in southwest China[J]. Hydrobiologia. 2013, 718(1):189-206.
THOMPSON R, CLARK RM, et al. Is spring starting earlier?[J]. Holocene. 2008, 18(1):95-104.
JEPPESEN E, KRONVANG B, OLESEN JE, et al. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation[J]. Hydrobiologia. 2011, 663(1):1-21.
CAPINHA C, ANASTáCIO P, TENEDóRIO JA, et al. Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability[J]. Biological Invasions. 2012, 14(8):1737-1751.
GEORGE G. The impact of climate change on European lakes[M]. Netherlands Springer. 2010.
SCHINDLER DW, BEATY KG, FEE EJ, et al. Effects of climatic warming on lakes of the central boreal forest[J]. Science. 1990, 250(4983):967-970.
MAGNUSON JJ, ROBERTSON DM, BENSON BJ, et al. Historical trends in lake and rice ice cover in the Northern Hemisphere[J]. Science. 2000, 289(5485):1743-1746.
LATIFOVIC R, POULIOT D, et al. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment. 2007, 106(4):492-507.
CORY RM, KLING GW, et al. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum[J]. Limnology and Oceanography Letters. 2018, 3(3):102-116.
BENGTSSON L. circulation and mixing in ice-covered lakes[M]. Netherlands Springer. 2011: 139-141.
KLEEBERG A, FREIDANK A, JÖHNK K, et al. Effects of ice cover on sediment resuspension and phosphorus entrainment in shallow lakes: Combining in situ experiments and wind-wave modeling[J]. Limnology and Oceanography. 2013, 58(5):1819-1833.
HAMPTON SE, MOORE MV, OZERSKY T, et al. Heating up a cold subject: prospects for under-ice plankton research in lakes[J]. Journal of Plankton Research. 2015, 37(2):277-284.
BERTILSSON S, BURGIN A, CAREY CC, et al. The under-ice microbiome of seasonally frozen lakes[J]. Limnology and Oceanography. 2013, 58(6):1998-2012.
BUTLER TM, WILHELM AC, DWYER AC, et al. Microbial community dynamics during lake ice freezing[J]. Scientific Reports. 2019, 9(1):6231-6231.
CRUMP BC, KLING GW, BAHR M, et al. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source.[J]. Applied and Environmental Microbiology. 2003, 69(4):2253-2268.
CRUAUD P, VIGNERON A, FRADETTE M, et al. Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions[J]. Limnology and Oceanography. 2019, 65(Suppl s1):S21-S37.
TRAN P, RAMACHANDRAN A, KHAWASIK O, et al. Microbial life under ice: metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes[J]. Environmental Microbiology. 2018, 20(7):2568-2584.
LI S, XIAO X, YIN X, et al. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica[J]. Extremophiles. 2006, 10(5):461-467.
UNDERWOOD GJC, MICHEL C, MEISTERHANS G, et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function[J]. Nature Climate Change. 2019, 9(2):170-176.
ROJAS-JIMENEZ K, ARAYA-LOBO A, QUESADA-PEREZ F, et al. Variation of bacterial communities along the vertical gradient in Lake Issyk Kul, Kyrgyzstan[J]. Environmental Microbiology Reports. 2021, 13(3):337-347.
LEFRANC M, THéNOT A, LEPèRE C, et al. Genetic diversity of small eukaryotes in lakes differing by their trophic status[J]. Applied and Environmental Microbiology. 2005, 71(10):5935-5942.
MA T, JIANG Y, ELBEHERY AHA, et al. Resilience of planktonic bacterial community structure in response to short-term weather deterioration during the growing season in an alpine lake[J]. Hydrobiologia: The International Journal of Aquatic Sciences. 2020, 847(3):535-548.
DZIALLAS C, GROSSART HP, et al. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp.[J]. Environmental Microbiology. 2011, 13(6):1632-1641.
SHADE A, JONES SE, MCMAHON KD, et al. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics.[J]. Environmental Microbiology. 2010, 10(4):1057-1067.
齐璐.寒旱区城市湖泊冰封期细菌群落结构特征变化研究[D].:内蒙古科技大学, 2019:58.
WURZBACHER CM, BAERLOCHER F, GROSSART HP, et al. Fungi in lake ecosystems[J]. Aquatic Microbial Ecology. 2010, 59(2):125-149.
商潘路, 陈胜男, 黄廷林, 等.深水型水库热分层诱导水质及真菌种群结构垂向演替[J].环境科学.2018,39(03):1141-1150.
薛烨飞.季节性冻融对农业排水渠湿地植物根系周围底泥环境及微生物的影响[D].哈尔滨:东北师范大学, 2021:13-20.
RIEDEL A, MICHEL C, GOSSELIN M, et al. Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie Shelf during the winter-spring transition[J]. Aquatic Microbial Ecology. 2007, 50(1):25-38.
CARON DA, COUNTWAY PD, JONES AC, et al. Marine protistan diversity[J]. Annual Review of Marine Science. 2012, 4(1):467-493.
李冉.热带/亚热带海区原生生物分子多样性研究[D].厦门大学, 2017:15-22.
姚保民, 曾青, 张丽梅, 等.土壤原生生物多样性及其生态功能研究进展[J].生物多样性.2022,30(12):22353.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构