浏览全部资源
扫码关注微信
清华大学 自动化系,北京 100084
[ "李翔,清华大学自动化系副教授、博士生导师;入选2019年国家海外高层次人才计划青年项目,长期从事多智能体、机器人智能操作、人机交互方向的研究;近年来主持了香港创新科技署项目、香港研究资助局项目、深圳科创委基础研究重点项目、国家自然科学基金项目(青年、面上、联合重点)、科技创新2030-“脑科学与类脑研究”重大项目课题,已出版一本由Springer发行的专著,共发表SCI期刊论文20余篇,包括The International Journal of Robotics Research,IEEE Transactions on Robotics,Automatica,IEEE Transactions on Automatic Control等;曾获得2017“最佳应用论文入围奖”(排名第一),担任IEEE Robotics and Automation Letters,IEEE Robotics & Automation Magazine以及机器人旗舰会议ICRA的编委,受邀在国际会议2019ICIRA、2020中国人工智能与机器人开发者大会、2020中国自动化大会作主题报告。E-mail:xiangli@tsinghua.edu.cn" ]
纸质出版日期:2022-09,
收稿日期:2022-05-12,
修回日期:2022-07-01,
移动端阅览
李翔,于铭瑞,贾永奕等.高危化工环境机器人应用研究进展[J].新兴科学和技术趋势,2022,1(1):107-121.
LI Xiang, YU Mingrui, JIA Yongyi, et al. Research progress of robot application in high-risk chemical industry. [J]. Emerging Science and Technology, 2022,1(1):107-121.
李翔,于铭瑞,贾永奕等.高危化工环境机器人应用研究进展[J].新兴科学和技术趋势,2022,1(1):107-121. DOI: 10.12405/j.issn.2097-1486.2022.01.011.
LI Xiang, YU Mingrui, JIA Yongyi, et al. Research progress of robot application in high-risk chemical industry. [J]. Emerging Science and Technology, 2022,1(1):107-121. DOI: 10.12405/j.issn.2097-1486.2022.01.011.
机器人在高危化工环境的应用能够降低安全风险,提高生产效率。本文对高危化工业机器人的技术发展和应用现状进行了系统梳理和总结。首先介绍了不同工作场景中的化工机器人的学术研究进展,并整理了国内外商业产品和产业应用现状;之后,对化工机器人的关键技术分别进行了分析,对研究进展进行了总结,对现存不足进行了讨论,并对未来发展方向做出了展望。
Robotic applications in high-risk chemical environments can reduce safety risks and improve production efficiency. This paper reviews the technical development and commercial application of robots in the high-risk chemical industry. First this paper introduces the academic research progress of chemical robots in different work scenarios as well as the current commercial products and industrial applications. Then the paper analyzes the key technologies of chemical robots
summarizes the research progress
discusses the existing shortcomings
and makes an outlook on the future development trend.
高危化工环境机器人高危化工行业
high-risk chemical environmentroboticshigh-risk chemical industry
中国新闻网.2020年1-11月全国共发生化工事故127起[EB/OL].(2020-12-08)[2022-06-18].https://www.chinanews.com/gn/2020/12-08/9356951.shtmlhttps://www.chinanews.com/gn/2020/12-08/9356951.shtml.
王国彤, 孙秉才, 储胜利, 等.炼化企业智能机器人巡检技术应用前景分析[J].炼油技术与工程, 2019, 49(09): 35-38.
京东科技.挂轨巡检AI机器人[EB/OL].(2021)[2022-06-18].https://irobot.jddglobal.com/rail/https://irobot.jddglobal.com/rail/.
BENGEL M, PFEIFFER K, GRAF B, et al. Mobile robots for offshore inspection and manipulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 3317-3322. doi: 10.1109/IROS.2009.5353885http://doi.org/10.1109/IROS.2009.5353885.
STEELE J P H, HAN Q, KARKI H, et al. Development of an oil and gas refinery inspection robot[C]//Volume4A: Dynamics, Vibration, andControl. Montreal: American Society of Mechanical Engineers, 2014.
STAFF J. Sensabot: a safe and cost-effective inspection solution[J]. Journal of Petroleum Technology, 2012, 64(10): 32-34. doi: 10.2118/1012-0032-JPThttp://doi.org/10.2118/1012-0032-JPT.
TOTALENERGIES. The argos project: one small step for a robot…[EB/OL]. (2021-12-08)[2022-06-18]. https://totalenergies.com/dossiers/argos-challengebuilding-tomorrows-oil-and-gas-robothttps://totalenergies.com/dossiers/argos-challengebuilding-tomorrows-oil-and-gas-robot.
ROMAN H T, PELLEGRINO B A, SIGRIST W R. Pipe crawling inspection robots: an overview[J]. IEEE Transactions on Energy Conversion, 1993, 8(3): 576-583. doi: 10.1109/60.257076http://doi.org/10.1109/60.257076.
SHUKLA A, KARKI H. Application of robotics in onshore oil and gas industry—a review part i[J]. Robotics and Autonomous Systems, 2016, 75: 490-507. doi: 10.1016/j.robot.2015.09.012http://doi.org/10.1016/j.robot.2015.09.012.
KWON YS, YI BJ. Design and motion planning of a two-module collaborative indoor pipeline inspection robot[J]. IEEE Transactions on Robotics, 2012, 28(3): 681-696. doi: 10.1109/TRO.2012.2183049http://doi.org/10.1109/TRO.2012.2183049.
PARK J, TAEHYUN KIM, YANG H. Development of an actively adaptable in-pipe robot[C]//2009 IEEEInternationalConferenceonMechatronics. Malaga, Spain: IEEE, 2009: 1-5. doi: 10.1109/IC-MECH.2009.4957174http://doi.org/10.1109/IC-MECH.2009.4957174.
OYA T, OKADA T. Development of a steerable, wheel-type, in-pipe robot and its path planning[J]. Advanced Robotics, 2005, 19(6): 635-650. doi: 10.1163/1568553054255646http://doi.org/10.1163/1568553054255646.
CHOI H R, RYEW S M. Robotic system with active steering capability for internal inspection of urban gas pipelines[J]. Mechatronics, 2002, 12(5): 713-736.
ROH S, CHOI H R. Differential-drive in-pipe robot for moving inside urban gas pipelines[J]. IEEE Transactions on Robotics, 2005, 21(1): 1-17. doi: 10.1109/TRO.2004.838000http://doi.org/10.1109/TRO.2004.838000.
KIM Y, MINOR M A. Distributed kinematic motion control of multi-robot coordination subject to physical constraints[J]. The International Journal of Robotics Research, 2010, 29(1): 92-109. doi: 10.1177/0278364909343217http://doi.org/10.1177/0278364909343217.
HUANG H, YAN J, CHENG T. Development and fuzzy control of a pipe inspection robot[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 1088-1095. doi: 10.1109/TIE.2009.2031671http://doi.org/10.1109/TIE.2009.2031671.
ROH S. Navigation inside pipelines with differential drive in-pipe robot[C]//Proceedings of IEEE InternationalConferenceonRoboticsandAutomation. IEEE, 2002: 2575-2580. doi: 10.1109/ROBOT.2002.1013619http://doi.org/10.1109/ROBOT.2002.1013619.
ZHANG Y, YAN G. In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting[J]. Mechanism and Machine Theory, 2007, 42(12): 1618-1631. doi: 10.1016/j.mechmachtheory.2006.12.004http://doi.org/10.1016/j.mechmachtheory.2006.12.004.
王越勇, 栾江峰.无缆化工管道机器人的研究进展[J].当代化工, 2013, 42(01): 79-81+85.
QI H, YE J, ZHANG X, et al. Wireless tracking and locating system for in-pipe robot[J]. Sensors and Actuators A: Physical, 2010, 159(1): 117-125. doi: 10.1016/j.sna.2010.02.021http://doi.org/10.1016/j.sna.2010.02.021.
NASSIRAEI A A F, KAWAMURA Y, AHRARY A, et al. Concept and design of a fully autonomous sewer pipe inspection mobile robot[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007: 136-143. doi: 10.1109/ROBOT.2007.363777http://doi.org/10.1109/ROBOT.2007.363777.
ULTIMATE CLEAN. Ultimate clean: specialized pipeline cleaning tool[EB/OL]. (2020)[2022-06-18]. https://www.rosen-group.com/global/solutions/products/product/ultimate-clean.htmlhttps://www.rosen-group.com/global/solutions/products/product/ultimate-clean.html.
DIAKONT. Robotic in-line inspection[EB/OL]. (2018)[2022-06-18]. http: //www.diakont.com/energy services/16/robotic-in-line-inspection.htmlhttp: //www.diakont.com/energy services/16/robotic-in-line-inspection.html.
NATIONAL ROBOTICS ENGINEERING CENTER. Pipeline explorer[EB/OL]. (2020-12-15)[2022-06-18]. https://www.nrec.ri.cmu.edu/nrec/solutions/energy/pipeline-explorer.htmlhttps://www.nrec.ri.cmu.edu/nrec/solutions/energy/pipeline-explorer.html.
中仪股份.管道CCTV检测机器人[EB/OL].(2022)[2022-06-18].http: //www.zy-cam.com/Robots/index.jhtmlhttp: //www.zy-cam.com/Robots/index.jhtml.
KALRA L P, GU J, MENG M. A wall climbing robot for oil tank inspection[C]//2006 IEEE International Conference on Robotics and Biomimetics. Kunming, China: IEEE, 2006: 1523-1528. doi: 10.1109/ROBIO.2006.340155http://doi.org/10.1109/ROBIO.2006.340155.
LONGO D, MUSCATO G. The alicia3 climbing robot: a three-module robot for automatic wall inspection[J]. IEEE Robotics & Automation Magazine, 2006, 13(1): 42-50. doi: 10.1109/MRA.2006.1598052http://doi.org/10.1109/MRA.2006.1598052.
ARACIL R, SALTAREN R J, REINOSO O. A climbing parallel robot: a robot to climb along tubular and metallic structures[J]. IEEE Robotics & Automation Magazine, 2006, 13(1): 16-22. doi: 10.1109/MRA.2006.1598049http://doi.org/10.1109/MRA.2006.1598049.
SOGI T, KAWAGUCHI Y, MORISAKI H, et al. Inspection robot for spherical storage tanks[C]//2000 IEEE International Conference on Industrial E-lectronics, Control and Instrumentation. Nagoya, Japan: IEEE, 2000: 393-398. doi: 10.1109/IECON.2000.973182http://doi.org/10.1109/IECON.2000.973182.
SHEN W, J. GU, SHEN Y. Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks[C]//IEEE International Conference Mechatronics and Automation, 2005. Niagara Falls, Ont., Canada: IEEE, 2005: 2072-2077. doi: 10.1109/IC-MA.2005.1626882http://doi.org/10.1109/IC-MA.2005.1626882.
CHOI H R, RYEW S M, KANG T H, et al. A wall climbing robot with closed link mechanism[C]//2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Takamatsu, Japan: IEEE, 2000: 2006-2011. doi: 10.1109/IROS.2000.895265http://doi.org/10.1109/IROS.2000.895265.
SCHEMPF H, CHEMEL B, EVERETT N. Neptune: above-ground storage tank inspection robot system[J]. IEEE Robotics & Automation Magazine, 1995, 2(2): 9-15. doi: 10.1109/100.392414http://doi.org/10.1109/100.392414.
CORREIA DA CRUZ A, SILVA RIBEIRO M. Rob-Tank inspec-in service robotized inspection tool for hazardous products storage tanks[J]. Industrial Robot: An International Journal, 2005, 32(2): 157-162. doi: 10.1108/01439910510582282http://doi.org/10.1108/01439910510582282.
FISCHER W, TACHE F, SIEGWART R. Inspection system for very thin and fragile surfaces, based on a pair of wall climbing robots with magnetic wheels[C]//2007 IEEE/RSJ International Conference on IntelligentRobotsandSystems. SanDiego: IEEE, 2007: 1216-1221. doi: 10.1109/IROS.2007.4399060http://doi.org/10.1109/IROS.2007.4399060.
INTERO. Online tank inspection system(otis)[EB/OL]. (2022)[2022-06-18]. https://www.intero-integrity.com/services/inspectionhttps://www.intero-integrity.com/services/inspection.
李刚, 朱广陞, 熊正.油罐机器人安全测量含硫化氢油品储罐技术研究[J].石油化工安全环保技术, 2018, 34(05): 43-46+7.
KOKS ROBOTICS. KOKS esot-system[EB/OL]. (2022)[2022-06-18]. https://koksrobotics.com/koks-esot-systemhttps://koksrobotics.com/koks-esot-system.
SHUKLA A, KARKI H. Application of robotics in offshore oil and gas industry—a review part ii[J]. Robotics and Autonomous Systems, 2016, 75: 508-524.
HAGEN P E, FOSSUM T G, HANSEN R E. Applications of AUVs with SAS[C]//OCEANS 2008. Quebec City: IEEE, 2008: 1-4. doi: 10.1109/OCEANS.2008.5152013http://doi.org/10.1109/OCEANS.2008.5152013.
RUSHFELDT P O, CONTER A, MCLEOD D L. State-of-the-art rov and control system for deepwater pipe repair[C]//Offshore Technology Conference. OnePetro, 1987.
HOVER F S, EUSTICE R M, KIM A, et al. Advanced perception, navigation and planning for autonomous in-water ship hull inspection[J]. The International Journal of Robotics Research, 2012, 31(12): 1445-1464. doi: 10.1177/0278364912461059http://doi.org/10.1177/0278364912461059.
ECA GROUP. Multi-missions autonomous underwater vehicles for civilian&military applications[EB/OL]. (2022)[2022-06-18]. https://www.ecagroup.com/en/find-your-eca-solutions/auv? &gclid=EA-IaIQobChMIyLqFqo3 6gIVJdWWCh3GtgYFEAAY ASAAEgLX3vD BwEhttps://www.ecagroup.com/en/find-your-eca-solutions/auv? &gclid=EA-IaIQobChMIyLqFqo3 6gIVJdWWCh3GtgYFEAAY ASAAEgLX3vD BwE.
LOCKHEED MARTIN. Marlin[EB/OL]. (2022)[2022-06-18]. https://www.lockheedmartin.com/en-us/products/marlin.htmlhttps://www.lockheedmartin.com/en-us/products/marlin.html.
LATTANZI D, MILLER G. Review of robotic infrastructure inspection systems[J]. Journal of Infrastructure Systems, 2017, 23(3): 04017004.
BUCHAN P, CONNOLLY M. The use of multi rotor remotely opearated aerial vehicles(roavs)as a method of close visual inspection(cvi)of live and difficult to access assets on offshore platforms[C]//SPE Offshore Europe Oil and Gas Conference and Exhibition. OnePetro, 2013.
AIROBOTICS. Benefits of the drone inspection solution[EB/OL]. (2016-06-21)[2022-06-18]. https://www.airoboticsdrones.com/applications/inspection/https://www.airoboticsdrones.com/applications/inspection/.
NIKOLIC J, BURRI M, REHDER J, et al. A uav system for inspection of industrial facilities[C]//2013 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2013: 1-8. doi: 10.1109/AERO.2013.6496959http://doi.org/10.1109/AERO.2013.6496959.
YAN Y, ZHANG H, ZHANG W, et al. An optimization model for uav inspection path of oil and gas pipeline network[C]//Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2018: V003T04A007.
HUANG X, KARKI H, SHUKLA A, et al. Variant pid controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle[C]//201717th International Conference on Control, Automation and Systems (ICCAS). Jeju: IEEE, 2017: 368-372. doi: 10.23919/ICCAS.2017.8204467http://doi.org/10.23919/ICCAS.2017.8204467.
MONWAR M, SEMIARI O, SAAD W. Optimized path planning for inspection by unmanned aerial vehicles swarm with energy constraints[C]//2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1-6. doi: 10.1109/GLOCOM.2018.8647342http://doi.org/10.1109/GLOCOM.2018.8647342.
PETRO. World's first live gas flare inspection completed[EB/OL]. (2011-06-05)[2022-06-18]. https://www.petro-online.com/news/fuel-for-thought/13/cyber-hawk/worlds first live gas flare inspection completed/15416https://www.petro-online.com/news/fuel-for-thought/13/cyber-hawk/worlds first live gas flare inspection completed/15416.
ANISI D A, PERSSON E, HEYER C. Real-world demonstration of sensor-based robotic automation in oil gas facilities[C]//2011 IEEE/RSJ International ConferenceonIntelligentRobotsandSystems. IEEE, 2011: 235-240. doi: 10.1109/IROS.2011.6094440http://doi.org/10.1109/IROS.2011.6094440.
沃迪智能. TPR系列码垛机器人产品介绍[EB/OL]. (2022)[2022-06-18]. http: //www.triowin.com/index.php/products/productsdetail/268.html? source=baidu&plan=jiqirenAGV&unit=maduojiqiren&keyword=huagongmaduojiqiren&e creative=3176 6405869&e pagenum=1&e keywordid=1102016 50050&e keywordid2=110201650050&bd vid=8400318688182639320http: //www.triowin.com/index.php/products/productsdetail/268.html? source=baidu&plan=jiqirenAGV&unit=maduojiqiren&keyword=huagongmaduojiqiren&e creative=3176 6405869&e pagenum=1&e keywordid=1102016 50050&e keywordid2=110201650050&bd vid=8400318688182639320.
王伟, 张智, 金凌, 等.厉害!英力特化工公司“消防机器人”闪亮登场[EB/OL].(2020-05-21)[2022-06-18].https://mp.weixin.qq.com/s/KMQqeFFaFY7Q Tnza-WiGPQhttps://mp.weixin.qq.com/s/KMQqeFFaFY7Q Tnza-WiGPQ.
ANISI D A, GUNNAR J, LILLEHAGEN T, et al. Robot automation in oil and gas facilities: indoor and onsite demonstrations[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 4729-4734. doi: 10.1109/IROS.2010.5649281http://doi.org/10.1109/IROS.2010.5649281.
中国机器人网.“解放人类”工业机器人广泛运用于化工[EB/OL].(2015-12-30)[2022-06-18].https://mp.weixin.qq.com/s/ru6Ch0YAl6GVU2UuijmhHwhttps://mp.weixin.qq.com/s/ru6Ch0YAl6GVU2UuijmhHw.
康德礼, 刘利民, 纪红兵.化工园区智能化应急救援平台框架构建[J].化工进展, 2017, 36(04): 1544-1549.
焦向东.石油化工行业特种焊接机器人技术现状及发展[EB/OL].(2016-06-24)[2022-06-18].https://mp.weixin.qq.com/s/kV6xPEAZwgmtU3-017XHCQhttps://mp.weixin.qq.com/s/kV6xPEAZwgmtU3-017XHCQ.
王建, 薛方正.硫化机上下料机器人的设计与开发[D].重庆: 重庆大学, 2014.
张阳光, 刘延杰.电石出炉机器人自动烧眼控制方法研究[D].哈尔滨: 哈尔滨工业大学, 2017.
蒋壮强, 崔凯, 张勇, 等.井架排管机器人研制[J].石油矿场机械, 2015, 44(12): 55-58.
龙再萌. IECEx体系对我国防爆产品安全认证发展的借鉴与启示[J]. 中国标准化, 2019(06): 215-216+218.
徐建平.新版GB3836系列标准解读与实施[J].石油化工自动化, 2011, 47(02): 9-18.
KYDD K, MACREZ S, POURCEL P. Autonomous robot for gas and oil sites[C]//SPE Offshore Europe Conference and Exhibition. Aberdeen, Scotland, UK: Society of Petroleum Engineers, 2015.
南阳防爆电气研究所; 煤炭科学研究总院抚顺分院.爆炸性环境 第2部分:由隔爆外壳“d”保护的设备[S].中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会, 2010: 56.
南阳防爆电气研究所; 煤炭科学研究总院抚顺分院.爆炸性环境 第4部分:由本质安全型“i”保护的设备[S].中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会, 2010: 56.
南阳防爆电气研究所; 煤炭科学研究总院抚顺分院.爆炸性环境 第5部分:由正压外壳型“p”保护的设备[S].中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会, 2010: 56.
MERRIAUX P, ROSSI R, BOUTTEAU R, et al. The vikings autonomous inspection robot: competing in the argos challenge[J]. IEEE Robotics & Automation Magazine, 2019, 26(1): 21-34. doi: 10.1109/MRA.2018.2877189http://doi.org/10.1109/MRA.2018.2877189.
NAGATANI K, ENDO D, WATANABE A, et al. Design and development of explosion-proof tracked vehicle for inspection of offshore oil plant[M]. HUTTER M, SIEGWART R, eds.//Field and Service Robotics. Cham: Springer International Publishing, 2018: 531-544.
YU L, YANG E, REN P, et al. Inspection robots in oil and gas industry: a review of current solutions and future trends[C]//25th International Conference on Automation and Computing (ICAC). Lancaster: IEEE, 2019: 1-6. doi: 10.23919/IConAC.2019.8895089http://doi.org/10.23919/IConAC.2019.8895089.
SHULL P J. Nondestructive evaluation: theory, techniques, and applications[M]. CRC press, 2002.
SHI Y, ZHANG C, LI R, et al. Theory and application of magnetic flux leakage pipeline detection[J]. Sensors, 2015, 15(12): 31036-31055. doi: 10.3390/s151229845http://doi.org/10.3390/s151229845.
SAFIZADEH M S, HASANIAN M. Gas pipeline corrosion mapping using pulsed eddy current technique[J]. ADMT Journal, 2011, 5(1).
GUO Y, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48. doi: 10.48550/arXiv.2108.04169http://doi.org/10.48550/arXiv.2108.04169.
LI Y, HUANG H, XIE Q, et al. Research on a surface defect detection algorithm based on mobilenet-ssd[J]. Applied Sciences, 2018, 8(9): 1678. doi: 10.3390/app8091678http://doi.org/10.3390/app8091678.
陶显, 侯伟, 徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报, 2021, 47(5): 1017-1034.
LIU L, CAO D, WU Y, et al. Defective samples simulation through adversarial training for automatic surface inspection[J]. Neurocomputing, 2019, 360: 230-245. doi: 10.1016/j.neucom.2019.05.080http://doi.org/10.1016/j.neucom.2019.05.080.
LEI J, GAO X, FENG Z, et al. Scale insensitive and focus driven mobile screen defect detection in industry[J]. Neurocomputing, 2018, 294: 72-81. doi: 10.1016/j.neucom.2018.03.013http://doi.org/10.1016/j.neucom.2018.03.013.
文立伟, 宋清华, 秦丽华, 等.基于机器视觉与umac的自动铺丝成型构件缺陷检测闭环控制系统[J].航空学报, 2015, 36(12): 3991-4000.
TORRES-SOLIS J, FALK T H, CHAU T. A review of indoor localization technologies: towards navigational assistance for topographical disorientation[M]. INTECH Open Access Publisher, 2010.
CHAPLOT D S, GANDHI D, GUPTA S, et al. Learning to explore using active neural slam[C]//2020 International Conference on Learning Representations (ICLR). OpenReview.net, 2020.
GAO X, ZHANG T. Unsupervised learning to detect loops using deep neural networks for visual slam system[J]. Autonomous Robots, 2017, 41(1): 1-18. doi: 10.1007/s10514-015-9516-2http://doi.org/10.1007/s10514-015-9516-2.
XIAO L, WANG J, QIU X, et al. Dynamic-slam: semantic monocular visual localization and mapping based on deep learning in dynamic environment[J]. Robotics and Autonomous Systems, 2019, 117: 1-16.
EVERETT M, CHEN Y F, HOW J P. Motion planning among dynamic, decision-making agents with deep reinforcement learning[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 3052-3059. doi: 10.1109/iros.2018.8593871http://doi.org/10.1109/iros.2018.8593871.
SHUKLA A, XIAOQIAN H, KARKI H. Autonomous tracking and navigation controller for an unmanned aerial vehicle based on visual data for inspection of oil and gas pipelines[C]//2016 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju, South Korea: IEEE, 2016: 194-200. doi: 10.1109/ICCAS.2016.7832320http://doi.org/10.1109/ICCAS.2016.7832320.
KONGEZOS V, KRIEGER R, ANISI B, et al. Human-robot cooperation for error recovery in oil and gas applications[C]//IET Conference on Control and Automation. Birmingham: IET, 2013: 43-43. doi: 10.1049/cp.2013.0013http://doi.org/10.1049/cp.2013.0013.
LOPES J, ROBB D A, AHMAD M, et al. Towards a conversational agent for remote robot-human teaming[C]//2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Daegu, Korea (South): IEEE, 2019: 548-549. doi: 10.1109/HRI.2019.8673286http://doi.org/10.1109/HRI.2019.8673286.
CAIZA G, GARCIA C A, NARANJO J E, et al. Flexible robotic teleoperation architecture for intelligent oil fields[J]. Heliyon, 2020, 6(4): e03833.
BITONNEAU D, MOULIERES-SEBAN T, DUMORA J, et al. Human-centered design of an interactive industrial robot system through participative simulations: application toapyrotechnictankcleaning workstation[C]//IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 2017: 9. doi: 10.1109/SII.2017.8279363http://doi.org/10.1109/SII.2017.8279363.
刘刚, 袁纪武, 李磊, 等.基于增强现实的石化DCS人机交互方法研究[J].计算机与应用化学, 2013, 30(12): 1431-1434.
HEGENBERG J, CRAMAR L, SCHMIDT L. Taskand user-centered design of a human-robot system for gas leak detection: from requirements analysis to prototypical realization[J]. IFAC Proceedings Volumes, 2012, 45(22): 793-798.
INOUE T, DE MAGISTRIS G, MUNAWAR A, et al. Deep reinforcement learning for high precision assembly tasks[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 819-825. doi: 10.48550/arXiv.1708.04033http://doi.org/10.48550/arXiv.1708.04033.
BRUNKE L, GREEFF M, HALL A W, et al. Safe learning in robotics: from learning-based control to safe reinforcement learning[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5(1): 411-444. doi: 10.48550/arXiv.2108.06266http://doi.org/10.48550/arXiv.2108.06266.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构