浏览全部资源
扫码关注微信
山西大学 复杂系统研究所,山西 太原 030006
[ "靳祯,男,山西大学二级教授,博导;现任山西省复杂系统创新团队带头人,山西省数学会理事长,中国数学学会理事,山西省“疾病防控的数学技术与大数据分析”重点实验室主任;Frontiers of Physics,Journal of Biological System s等5个期刊编委;获教育部新世纪优秀人才,全国优秀教师,享受国务院政府特殊津贴;主要从事生物动力系统、复杂网络系统、健康大数据分析研究,发表SCI论文300余篇,被引近1万次,连续入选爱思唯尔高被引学者,出版专著7部;主持国家级项目10项,其中国家基金重点项目2项,国家重点研发计划子项目1项;曾获山西省科学技术奖(自然科学类)一等奖2项,二等奖1项,教育部高等学校优秀成果二等(自然科学类)奖1项。E-mail:jinzhen@sxu.edu.cn" ]
[ "张菊平,女,教授;博士,加拿大York University博士后,博士生导师;“三晋英才”青年优秀人才;目前主要从事生物数学及复杂网络上的传播动力学研究工作;主持完成国家和省部级项目7项,包括国家基金面上项目等;在JMB,BMB,JTB等期刊发表论文40余篇,参编出版专著1部;获山西省科学技术奖(自然科学类)一等奖2项,山西省高等学校优秀成果(自然科学类)二等奖1项。" ]
纸质出版日期:2022-09,
收稿日期:2022-05-20,
修回日期:2022-08-24,
移动端阅览
靳祯,苟巍,张菊平.高阶网络上传染病传播动力学[J].新兴科学和技术趋势,2022,1(1):80-87.
JIN Zhen, GOU Wei, ZHANG Juping. The infectious disease transmission dynamics on higher-order networks. [J]. Emerging Science and Technology, 2022,1(1):80-87.
靳祯,苟巍,张菊平.高阶网络上传染病传播动力学[J].新兴科学和技术趋势,2022,1(1):80-87. DOI: 10.12405/j.issn.2097-1486.2022.01.008.
JIN Zhen, GOU Wei, ZHANG Juping. The infectious disease transmission dynamics on higher-order networks. [J]. Emerging Science and Technology, 2022,1(1):80-87. DOI: 10.12405/j.issn.2097-1486.2022.01.008.
不同规模的聚集会加强传染病的传播,刻画与分析其传播效应是传染病传播动力学研究面临的理论难题和应用瓶颈问题。近年来,随着单纯复形和超网络研究的发展,从高阶网络传播动力学角度去解决这类问题成为可能。高阶网络上的传染病传播动力学研究,主要是从高阶网络的不同结构、拓扑和几何特征出发,对静态、时变和空间等不同类型高阶网络上的各种传染病传播进行动力学建模和性态分析,开展高阶网络上现实传染病的定性与定量情景式研究,将为传染病传播动力学研究注入新的活力。
The crowd gathering strengthens the spread of infectious diseases.Depicting and analyzing its transmission effect is the difficult theoretical problems and bottlenecks of infectious disease transmission dynamics.In recent years
with the development of research for simplical complexes and hypernetworks
it becomes possible to solve such problems from the perspective of transmission dynamics on higher-order networks.The study of infectious disease transmission dynamics on higher-order networks
which mainly starts from the distinct structure
topology and geometrical characteristics of higher-order networks
carries out dynamical modeling and behavior analysis of different types of infectious disease on various kinds of higher-networks
including the static
time-varying or spatial ones
and conducts qualitative and quantitative research in specific context of real infectious diseases on higher-order networks.The study will inject vitality into the infectious disease transmission dynamics.
高阶网络传染病动力学模型单纯复形超网络
higher-order networksinfectious diseasesdynamics modelssimplicial complexeshypernet-works
LLOYD-SMITH J O, SCHREIBER S J, KOPP P E, et al. Superspreading and the effect of individual variation on disease emergence[J]. Nature, 2005, 438(7066): 355-359. doi: 10.1038/nature04153http://doi.org/10.1038/nature04153.
HE D, ZHAO S, XU X, et al. Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control[J]. BMC Public Health, 2020, 20(1): 1-4. doi: 10.1186/s12889-020-09624-2http://doi.org/10.1186/s12889-020-09624-2.
ZLATIĆ V, GHOSHAL G, CALDARELLI G. Hypergraph topological quantities for tagged social networks[J]. Physical Review E, 2009, 80(3): 036118. doi: 10.1103/PhysRevE.80.036118http://doi.org/10.1103/PhysRevE.80.036118.
CENCETTI G, BATTISTON F, LEPRI B, et al. Temporal properties of higher-order interactions in social networks[J]. Scientific Reports, 2021, 11(1): 1-10. doi: 10.1038/s41598-021-86469-8http://doi.org/10.1038/s41598-021-86469-8.
马知恩, 周义仓, 王稳地, 靳祯.传染病动力学的数学建模与研究[M].北京: 科学出版社, 2004.
KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, 1927, 115(772): 700-721.
KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, 1932, 138(834): 55-83.
ALLEN L J S, BRAUER F, VAN DEN DRIESSCHE P, et al. Mathematical epidemiology[M].Berlin: Springer, 2008.
LI M Y. An introduction to mathematical modeling of infectious diseases[M].Cham, Switzerland: Springer, 2018.
BRAUER F, CASTILLO-CHAVEZ C, FENG Z. Mathematical models in epidemiology[M].New York: Springer, 2019.
靳祯, 孙桂全, 刘茂省.网络传染病动力学建模与分析[M].北京: 科学出版社, 2014.
KISS I Z, MILLER J C, SIMON P L. Mathematics of Epidemics on Networks[M].Cham, Switzerland: Springer, 2017.
VOLZ E M, MILLER J C, GALVANI A, et al. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics[J]. PLoS Computational Biology, 2011, 7(6): e1002042. doi: 10.1371/journal.pcbi.1002042http://doi.org/10.1371/journal.pcbi.1002042.
SALATHÉ M, JONES J H. Dynamics and control of diseases in networks with community structure[J]. PLoSComputationalBiology, 2010, 6(4): e1000736. doi: 10.1371/journal.pcbi.1000736http://doi.org/10.1371/journal.pcbi.1000736.
LI J, LI W, JIN Z. The epidemic model based on the approximation for third-order motifs on networks[J]. Mathematical Biosciences, 2018, 297: 12-26. doi: 10.1016/j.mbs.2018.01.002http://doi.org/10.1016/j.mbs.2018.01.002.
HOUSE T, DAVIES G, DANON L, et al. A motifbased approach to network epidemics[J]. Bulletin of Mathematical Biology, 2009, 71(7): 1693-1706. doi: 10.1007/s11538-009-9420-zhttp://doi.org/10.1007/s11538-009-9420-z.
PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200. doi: 10.1103/PhysRevLett.86.3200http://doi.org/10.1103/PhysRevLett.86.3200.
VAN MIEGHEM P, OMIC J, KOOIJ R. Virus spread in networks[J]. IEEE/ACMTransactions On Networking, 2008, 17(1): 1-14. doi: 10.1109/TNET.2008.925623http://doi.org/10.1109/TNET.2008.925623.
EAMES K T D, KEELING M J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 13330-13335. doi: 10.1073/pnas.202244299http://doi.org/10.1073/pnas.202244299.
MILLER J C, SLIM A C, VOLZ E M. Edge-based compartmental modelling for infectious disease spread[J]. Journal of the Royal Society Interface, 2012, 9(70): 890-906. doi: 10.1098/rsif.2011.0403http://doi.org/10.1098/rsif.2011.0403.
NEWMAN M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128. doi: 10.1103/PhysRevE.66.016128http://doi.org/10.1103/PhysRevE.66.016128.
BICK C, GROSS E, HARRINGTON H A, et al. What are higher-order networks?[J/OL].arXiv preprint arXiv: 2104. 11329, 2021.https: //arxiv.org/abs/2104.11329https: //arxiv.org/abs/2104.11329.
BIANCONI G. Higher-Order Networks: An Introduction to Simplicial Complexes[M].Cambridge: Cambridge University Press, 2021.
索琪, 郭进利.基于超图的超网络:结构及演化机制[J].系统工程理论与实践, 2017, 37(3): 720-734. doi: 10.12011/1000-6788(2017)03-0720-15http://doi.org/10.12011/1000-6788(2017)03-0720-15.
ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hypernetworks[J]. Physica A: Statistical Mechanics and its Applications, 2006, 364: 581-594. doi: 10.1016/j.physa.2005.12.002http://doi.org/10.1016/j.physa.2005.12.002.
BATTISTON F, CENCETTI G, IACOPINI I, et al. Networks beyond pairwise interactions: structure and dynamics[J]. Physics Reports, 2020, 874: 1-92. doi: 10.1016/j.physrep.2020.05.004http://doi.org/10.1016/j.physrep.2020.05.004.
IACOPINI I, PETRI G, BARRAT A, et al. Simplicial models of social contagion[J]. Nature Communications, 2019, 10(1): 1-9. doi: 10.1038/s41467-019-10431-6http://doi.org/10.1038/s41467-019-10431-6.
WANG D, ZHAO Y, LUO J, et al. Simplicial SIRS epidemic models with nonlinear incidence rates[J]. Chaos, 2021, 31(5): 053112. doi: 10.1063/5.0040518http://doi.org/10.1063/5.0040518.
LI W Y, XUE X, PAN L, et al. Competing spreading dynamics in simplicial complex[J]. Applied Mathematics and Computation, 2022, 412: 126595. doi: 10.1016/j.amc.2021.126595http://doi.org/10.1016/j.amc.2021.126595.
JHUN B, JO M, KAHNG B. Simplicial SIS model in scale-free uniform hypergraph[J]. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(12): 123207. doi: 10.1088/1742-5468/ab5367http://doi.org/10.1088/1742-5468/ab5367.
CISNEROS-VELARDE P, BULLO F. Multi-group SIS epidemics with simplicial and higher-order inter-actions[J]. IEEE Transactions on Control of Network Systems, 2021. doi: 10.1109/TCNS.2021.3124269http://doi.org/10.1109/TCNS.2021.3124269.
NIE Y, LI W, PAN L, et al. Markovian approach to tackle competing pathogens in simplicial complex[J]. Applied Mathematics and Computation, 2022, 417: 126773. doi: 10.1016/j.amc.2021.126773http://doi.org/10.1016/j.amc.2021.126773.
MATAMALAS J T, GÓMEZ S, ARENAS A. Abrupt phase transition of epidemic spreading in simplicial complexes[J]. Physical Review Research, 2020, 2(1): 012049. doi: 10.1103/PhysRevResearch.2.012049http://doi.org/10.1103/PhysRevResearch.2.012049.
CHOWDHARY S, KUMAR A, CENCETTI G, et al. Simplicial contagion in temporal higher-order networks[J]. Journal of Physics: Complexity, 2021, 2(3): 035019. doi: 10.1088/2632-072X/ac12bdhttp://doi.org/10.1088/2632-072X/ac12bd.
BODÓ Á, KATONA G Y, SIMON P L. SIS epidemic propagation on hypergraphs[J]. Bulletin of Mathematical Biology, 2016, 78(4): 713-735. doi: 10.1007/s11538-016-0158-0http://doi.org/10.1007/s11538-016-0158-0.
DE ARRUDA G. F, PETRI G, MORENO Y.Social contagion models on hypergraphs[J]. Physical Review Research, 2020, 2(2): 023032. doi: 10.1103/PhysRevResearch.2.023032http://doi.org/10.1103/PhysRevResearch.2.023032.
HIGHAM D J, DE KERGORLAY H L. Epidemics on hypergraphs: Spectral thresholds for extinction[J]. Proceedings of the Royal Society A, 2021, 477(2252): 20210232. doi: 10.1098/rspa.2021.0232http://doi.org/10.1098/rspa.2021.0232.
HIGHAM D J, DE KERGORLAY H L. Mean Field Analysis of Hypergraph Contagion Model[J/OL].arXiv preprint arXiv: 2108. 05451, 2021.https: //arxiv.org/abs/2108.05451https: //arxiv.org/abs/2108.05451.
LANDRY N W, RESTREPO J G. Hypergraph dynamics: assortativity and the expansion eigenvalue[J/OL].arXiv preprint arXiv: 2109. 01099, 2021.https: //arxiv.org/abs/2109.01099https: //arxiv.org/abs/2109.01099.
JHUN B. Effective epidemic containment strategy in hypergraphs[J]. Physical Review Research, 2021, 3(3): 033282. doi: 10.1103/PhysRevResearch.3.033282http://doi.org/10.1103/PhysRevResearch.3.033282.
LANDRY N W, RESTREPO J G. The effect of heterogeneity on hypergraph contagion models[J]. Chaos, 2020, 30(10): 103117. doi: 10.1063/5.0020034http://doi.org/10.1063/5.0020034.
ST-ONGE G, THIBEAULT V, ALLARD A, et al. Social confinement and mesoscopic localization of epidemics on networks[J]. Physical Review Letters, 2021, 126(9): 098301. doi: 10.1103/PhysRev-Lett.126.098301http://doi.org/10.1103/PhysRev-Lett.126.098301.
ST-ONGE G, THIBEAULT V, ALLARD A, et al. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks[J]. Physical Review E, 2021, 103(3): 032301. doi: 10.1103/PhysRevE.103.032301http://doi.org/10.1103/PhysRevE.103.032301.
ST-ONGE G, IACOPINI I, LATORA V, et al. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs[J]. Communications Physics, 2022, 5(1): 1-16. doi: 10.1038/s42005-021-00788-whttp://doi.org/10.1038/s42005-021-00788-w.
SUN H, BIANCONI G. Higher-order percolation processes on multiplex hypergraphs[J]. Physical Review E, 2021, 104(3): 034306. doi: 10.1103/PhysRevE.104.034306http://doi.org/10.1103/PhysRevE.104.034306.
ANTELMI A, CORDASCO G, SCARANO V, et al. Modeling and Evaluating Epidemic Control Strategies With High-Order Temporal Networks[J]. IEEE Access, 2021, 9: 140938140964. doi: 10.1109/ACCESS.2021.3119459http://doi.org/10.1109/ACCESS.2021.3119459.
HONG D, DEY R, LIN X, et al. Group testing via hypergraph factorization applied to COVID-19[J]. Nature Communications, 2022, 13(1): 1-13. doi: 10.1038/s41467-022-29389-zhttp://doi.org/10.1038/s41467-022-29389-z.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构