浏览全部资源
扫码关注微信
1.山西医科大学 基础医学院生物化学与分子生物学教研室,山西 太原 030001
2.山西医科大学 第五临床医学院(山西省人民医院)中心实验室,山西 太原 030012
3.肾脏病山西省重点实验室,山西 太原 030012
4.山西医科大学 微生态研究院,山西 太原 030001
[ "李亚峰,男,山西省人民医院肾内科主任医师,博士生导师,省优专家;美国天普大学博士后;国家十三五重大专项项目负责,第十三届中华全国青年联合会委员,第九届山西省科协委员,山西省青年科技人才协会秘书长等;Biomolecules,Frontiers in Cardiovascular Medicine,Frontiers in Physiology,《中国分脏病学》等国际国内学术杂志编委、审稿;目前主要从事黏膜屏障损伤参与IgA肾病的机制研究工作;主持国家和省部级项目10余项,其中包括国家自然基金3项,十三五重大项目1项;在Arthritis Rheumatol,Ann Rheum Dis,J Hematol Oncol,Protein Cell等期刊发表论文60余篇(其中以第一/通讯作者收录SCI论文20余篇),获得国家发明专利8项,参与出版著作1部;曾获山西省“三晋英才”支持计划拔尖骨干人才、山西省学术技术带头人、山西省高等学校优秀青年学术带头人、山西省青年岗位能手、山西省优秀科技工作者、山西最美科技工作者、山西省“五小”创新大赛一等奖。E-mail:yafengli@sxmu.edu.cn" ]
纸质出版日期:2022-09,
收稿日期:2022-04-13,
修回日期:2022-05-11,
移动端阅览
钱曼云,李亚峰.不同技术路线研发新型冠状病毒疫苗的特性和研究进展[J].新兴科学和技术趋势,2022,1(1):71-79.
QIAN Manyun, LI Yafeng. Characteristics and Research Progress of SARS-CoV-2 Vaccine Developed by Different Technical Routes. [J]. Emerging Science and Technology, 2022,1(1):71-79.
钱曼云,李亚峰.不同技术路线研发新型冠状病毒疫苗的特性和研究进展[J].新兴科学和技术趋势,2022,1(1):71-79. DOI: 10.12405/j.issn.2097-1486.2022.01.007.
QIAN Manyun, LI Yafeng. Characteristics and Research Progress of SARS-CoV-2 Vaccine Developed by Different Technical Routes. [J]. Emerging Science and Technology, 2022,1(1):71-79. DOI: 10.12405/j.issn.2097-1486.2022.01.007.
席卷全球的新型冠状病毒肺炎(corona virus disease 2019,COVID-19,以下简称新冠肺炎)疫情给全人类的生命健康安全带来巨大威胁,传播速度快、感染率高是新冠肺炎的典型特点,据历史经验,及时接种疫苗可以有效阻止疫情传播。在疫情爆发后,积极有效地启动研发新型冠状病毒(SARS-CoV-2)疫苗成为全球科学家及科研机构的共同目标。在疫苗研发和设计的过程中,一些经获批使用的SARS-CoV-2疫苗具有较好的安全性和免疫原性,其临床试验已证实了具有良好的保护效力。根据SARS-CoV-2疫苗研发的技术路线不同,疫苗主要包括灭活疫苗(inactivated virus vaccine)、重组蛋白疫苗(recombinant protein vaccine)、病毒载体疫苗(viral vector-based vaccine)和核酸疫苗(nucleic acid vaccine)等。本文对各类疫苗优缺点和研制进展进行综述,阐述SARS-CoV-2疫苗所面临的一些问题,为疫苗后续的改进提供有益借鉴。
The global epidemic of coronavirus coronavirus 2019 (COVID-19) has brought great threat to the life and the health of human beings. The rapid spread and high infection rate are typical characteristics of new coronavirus pneumonia; timely vaccination can effectively prevent the spread of the epidemic. After the outbreak of the epidemic
the active and effective launch of research and development of SARS-CoV-2 vaccine has become a common goal of scientists and research institutions around the world. In the course of vaccine development and design
some approved SARS-CoV-2 vaccines have good safety and immunogenicity
and their clinical trials have proved their protective efficacy. According to the different technical route of development of SARS-CoV-2 vaccine
vaccines mainly include inactivated vaccine
recombinant protein vaccine
viral vector-based vaccine and nucleic acid vaccine. In this paper
the advantages and disadvantages of all kinds of vaccines and the development of SARS-CoV-2 vaccine were reviewed
and some problems of SARS-CoV-2 vaccine were discussed.
新型冠状病毒新型冠状病毒肺炎疫苗
SARS-CoV-2COVID-19vaccine
陈一晖, 李武.新冠肺炎(Covid-19)的临床症状、临床分类与诊断[J].基因组学与应用生物学, 2020, 39(08): 3904-3907. doi: 10.13417/j.gab.039.003904http://doi.org/10.13417/j.gab.039.003904.
IZDA V, JEFFRIES MA, SAWALHA AH. COVID-19: A review of therapeutic strategies and vaccine candidates[J]. Clin Immunol, 2021, 222: 108634. doi: 10.1016/j.clim.2020.108634http://doi.org/10.1016/j.clim.2020.108634.
KEEHNER J, HORTON LE, PFEFFER MA, et al. SARS-CoV-2Infection after Vaccination in Health Care Workers in California[J]. N Engl J Med, 2021, 384(18): 1774-1775. doi: 10.1056/NEJMc2101927http://doi.org/10.1056/NEJMc2101927.
LEE HJ, WOO Y, HAHN TW, et al. Formation and Maturation of the Phagosome: A Key Mechanism in Innate Immunity against Intracellular Bacterial Infection[J]. Microorganisms, 2020, 8(9): 1298. doi: 10.3390/microorganisms8091298http://doi.org/10.3390/microorganisms8091298.
ROSALES C, URIBE-QUEROL E. Phagocytosis: A Fundamental Process in Immunity[J]. Biomed Res Int, 2017, 2017: 9042851. doi: 10.1155/2017/9042851http://doi.org/10.1155/2017/9042851.
ZABEL F, FETTELSCHOSS A, VOGEL M, et al. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation[J]. Immunology, 2017, 150(3): 329-342. doi: 10.1111/imm.12688http://doi.org/10.1111/imm.12688.
杨玉莹, 左代英.新型冠状病毒疫苗研发进展[J].沈阳药科大学学报, 2021, 38(07): 762-769. doi: 10.14066/j.cnki.cn21-1349/r.2021.0143http://doi.org/10.14066/j.cnki.cn21-1349/r.2021.0143.
ALTURKI SO, ALTURKI SO, CONNORS J, et al. The 2020 Pandemic: Current SARS-CoV-2 Vaccine Development[J]. Front Immunol, 2020, 11: 1880. doi: 10.3389/fimmu.2020.01880http://doi.org/10.3389/fimmu.2020.01880.
LIU X, LIU C, LIU G, et al. COVID-19: Progress in diagnostics, therapy and vaccination[J]. Theranostics, 2020, 10(17): 7821-7835. doi: 10.7150/thno.47987http://doi.org/10.7150/thno.47987.
WON JH, LEE H. The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic[J]. Int J Mol Sci, 2020, 21(24): 9775. doi: 10.3390/ijms21249775http://doi.org/10.3390/ijms21249775.
TUMBAN E. Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval[J]. Viruses, 2020, 13(1): 54. doi: 10.3390/v13010054http://doi.org/10.3390/v13010054.
TREGONING JS, BROWN ES, CHEESEMAN HM, et al. Vaccines for COVID-19[J]. Clin Exp Immunol, 2020, 202(2): 162-192. doi: 10.1111/cei.13517http://doi.org/10.1111/cei.13517.
付钰倩, 芦增增, 黄妙惠.新型冠状病毒肺炎免疫反应与疫苗开发的研究进展[J].福建轻纺, 2021(06): 2-7+12. doi: 10.3969/j.issn.1007-550X.2021.06.001http://doi.org/10.3969/j.issn.1007-550X.2021.06.001.
白仲虎, 李昕然, 王荣斌, 等.哺乳动物细胞生产人用灭活疫苗相关技术进展[J].中国细胞生物学学报, 2019, 41(10): 1986-1993. doi: 10.11844/cjcb.2019.10.0016http://doi.org/10.11844/cjcb.2019.10.0016.
金翔, 俞庆龄, 张璐楠, 等.针对新型冠状病毒的DNA疫苗研究进展[J].中国新药杂志, 2020, 29(21): 2425-2433. doi: 10.3969/j.issn.1003-3734.2020.21.006http://doi.org/10.3969/j.issn.1003-3734.2020.21.006.
MULLIGAN MJ. An Inactivated Virus Candidate Vaccine to Prevent COVID-19[J]. JAMA, 2020, 324(10): 943-945. doi: 10.1001/jama.2020.15539http://doi.org/10.1001/jama.2020.15539.
桓瑜, 毕玉海.2019新型冠状病毒疫苗研究进展及展望[J].中国科学:生命科学, 2022, 52(02): 237-248. doi: 10.1360/SSV-2021-0082http://doi.org/10.1360/SSV-2021-0082.
黄苏玥, 沈银忠.新型冠状病毒疫苗的研发进展[J].上海医药, 2021, 42(17): 16-21. doi: 10.3969/j.issn.1006-1533.2021.17.005http://doi.org/10.3969/j.issn.1006-1533.2021.17.005.
HOLMES KV. SARS coronavirus: a new challenge for prevention and therapy[J]. J Clin Invest, 2003, 111(11): 1605-9. doi: 10.1172/JCI18819http://doi.org/10.1172/JCI18819.
DENG Y, LAN J, BAO L, et al. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus[J]. Emerg Microbes Infect, 2018, 7(1): 60. doi: 10.1038/s41426-018-0056-7http://doi.org/10.1038/s41426-018-0056-7.
WU Z, HU Y, XU M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2021, 21(6): 803-812. doi: 10.1016/S1473-3099(20)30987-7http://doi.org/10.1016/S1473-3099(20)30987-7.
XIA S, ZHANG Y, WANG Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebocontrolled, phase 1/2 trial[J]. Lancet Infect Dis, 2021, 21(1): 39-51. doi: 10.1016/S1473-3099(20)30831-8http://doi.org/10.1016/S1473-3099(20)30831-8.
XIA S, ZHANG Y, WANG Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial[J]. Lancet Infect Dis, 2022, 22(2): 196-208. doi: 10.1016/S1473-3099(21)00462-Xhttp://doi.org/10.1016/S1473-3099(21)00462-X.
VÁLYI-NAGY I, MATULA Z, GÖNCZI M, et al. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans[J]. Geroscience, 2021, 43(5): 2321-2331. doi: 10.1007/s11357-021-00471-6http://doi.org/10.1007/s11357-021-00471-6.
史长城, 李晴宇, 朱洁瑾, 等.新型冠状病毒肺炎疫苗的临床试验研究进展[J].中国现代应用药学, 2021, 38(21): 2748-2753. doi: 10.13748/j.cnki.issn1007-7693.2021.21.019http://doi.org/10.13748/j.cnki.issn1007-7693.2021.21.019.
ELLA R, VADREVU KM, JOGDAND H, et al. Safety and immunogenicity of an inactivated SARSCoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial[J]. Lancet Infect Dis, 2021, 21(5): 637-646. doi: 10.1016/S1473-3099(21)00070-0http://doi.org/10.1016/S1473-3099(21)00070-0.
ELLA R, REDDY S, JOGDAND H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a doubleblind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial[J]. Lancet Infect Dis, 2021, 21(7): 950-961. doi: 10.1016/S1473-3099(21)00070-0http://doi.org/10.1016/S1473-3099(21)00070-0.
ELLA R, REDDY S, BLACKWELDER W, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial[J]. Lancet, 2021, 398(10317): 2173-2184. doi: 10.1016/S0140-6736(21)02000-6http://doi.org/10.1016/S0140-6736(21)02000-6.
KARPIŃSKI TM, OŻAROWSKI M, SEREMAKMROZIKIEWICZ A, et al. The 2020 race towards SARS-CoV-2 specific vaccines[J]. Theranostics, 2021, 11(4): 1690-1702. doi: 10.7150/thno.5369http://doi.org/10.7150/thno.5369.
LI YD, CHI WY, SU JH, et al. Coronavirus vaccine development: from SARS and MERS to COVID-19[J]. J Biomed Sci, 2020, 27(1): 104. doi: 10.1186/s12929-020-00695-2http://doi.org/10.1186/s12929-020-00695-2.
廖盼, 肖义军.新冠病毒疫苗研发策略与进展概述[J].生物学教学, 2021, 46(05): 8-10. doi: 10.3969/j.issn.1004-7549.2021.05.003http://doi.org/10.3969/j.issn.1004-7549.2021.05.003.
方朝东, 张玉辉, 吴浩飞, 等.新型冠状病毒肺炎疫苗研究进展概述[J].中国药师, 2020, 23(09): 1826-1830. doi: 10.3969/j.issn.1008-049X.2020.09.037http://doi.org/10.3969/j.issn.1008-049X.2020.09.037.
ROLDÃO A, MELLADO MC, CASTILHO LR, et al. Virus-like particles in vaccine development[J]. Expert Rev Vaccines, 2010, 9(10): 1149-1176. doi: 10.1586/erv.10.115http://doi.org/10.1586/erv.10.115.
CAO Y, ZHU X, HOSSEN MN, et al. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant[J]. Nat Commun, 2018, 9(1): 3695. doi: 10.1038/s41467-018-06151-yhttp://doi.org/10.1038/s41467-018-06151-y.
KAUR SP, GUPTA V. COVID-19 Vaccine: A comprehensive status report[J]. Virus Res, 2020, 288: 198114. doi: 10.1016/j.virusres.2020.198114http://doi.org/10.1016/j.virusres.2020.198114.
WANG J, PENG Y, XU H, et al. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation[J]. AAPS PharmSciTech, 2020, 21(6): 225. doi: 10.1208/s12249-020-01744-7http://doi.org/10.1208/s12249-020-01744-7.
BHAT EA, KHAN J, SAJJAD N, et al. SARSCoV-2: Insight in genome structure, pathogenesis and viral receptor binding analysis-An updated review[J]. Int Immunopharmacol, 2021, 95: 107493. doi: 10.1016/j.intimp.2021.107493http://doi.org/10.1016/j.intimp.2021.107493.
KEECH C, ALBERT G, CHO I, et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine[J]. N Engl J Med, 2020, 383(24): 2320-2332. doi: 10.1056/NEJMoa2026920http://doi.org/10.1056/NEJMoa2026920.
李晓瑞, 李兴航, 严汉池.新型冠状病毒疫苗的研发现状及展望[J].中国生物制品学杂志, 2021, 34(05): 602-606. doi: 10.13200/j.cnki.cjb.003343http://doi.org/10.13200/j.cnki.cjb.003343.
HUMPHREYS IR, SEBASTIAN S. Novel viral vectors in infectious diseases[J]. Immunology, 2018, 153(1): 1-9. doi: 10.1111/imm.12829http://doi.org/10.1111/imm.12829.
BOS R, RUTTEN L, VAN DER LUBBE JEM, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses[J]. NPJ Vaccines, 2020, 5: 91. doi: 10.1038/s41541-020-00243-xhttp://doi.org/10.1038/s41541-020-00243-x.
LOGUNOV DY, DOLZHIKOVA IV, ZUBKOVA OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, nonrandomised phase 1/2 studies from Russia[J]. Lancet, 2020, 396(10255): 887-897. doi: 10.1016/S0140-6736(20)31866-3http://doi.org/10.1016/S0140-6736(20)31866-3.
成传刚, 慕婷, 袁军, 等.重组病毒载体疫苗研究进展[J].中国病毒病杂志, 2018, 8(04): 318-328. doi: 10.16505/j.2095-0136.2018.0024http://doi.org/10.16505/j.2095-0136.2018.0024.
ZHU FC, LI YH, GUAN XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395(10240): 1845-1854. doi: 10.1016/S0140-6736(20)31208-3http://doi.org/10.1016/S0140-6736(20)31208-3.
HEININGER U. Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19[J]. N Engl J Med, 2021, 385(3): 288. doi: 10.1056/NEJMc2107809http://doi.org/10.1056/NEJMc2107809.
SHAY DK, GEE J, SU JR, et al. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine-United States, March-April 2021[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(18): 680-684. doi: 10.15585/mmwr.mm7018e2http://doi.org/10.15585/mmwr.mm7018e2.
VOYSEY M, CLEMENS SAC, MADHI SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK[J]. Lancet, 2021, 397(10269): 99-111. doi: 10.1016/S0140-6736(20)32661-1http://doi.org/10.1016/S0140-6736(20)32661-1.
GREINACHER A, THIELE T, WARKENTIN TE, et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination[J]. N Engl J Med, 2021, 384(22): 2092-2101. doi: 10.1056/NEJMoa2104840http://doi.org/10.1056/NEJMoa2104840.
MCCRAE KR. Thrombotic thrombocytopenia due to SARS-CoV-2 vaccination[J]. Cleve Clin JMed, 2021. doi: 10.3949/ccjm.88a.ccc078http://doi.org/10.3949/ccjm.88a.ccc078.
WISE J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots[J]. BMJ, 2021, 372: n699. doi: 10.1136/bmj.n699http://doi.org/10.1136/bmj.n699.
KUTZLER MA, WEINER DB. DNA vaccines: ready for prime time[J]. Nat Rev Genet, 2008, 9(10): 776-88. doi: 10.1038/nrg2432http://doi.org/10.1038/nrg2432.
PARDI N, HOGAN MJ, PORTER FW, et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4): 261-279. doi: 10.1038/nrd.2017.243http://doi.org/10.1038/nrd.2017.243.
赵琪, 安静, 陈辉.登革病毒DNA疫苗的研究进展[J].军事医学, 2016, 40(11): 923-926. doi: 10.7644/j.issn.1674-9960.2016.11.017http://doi.org/10.7644/j.issn.1674-9960.2016.11.017.
于琨, 安丽平, 王伟, 等.流感疫苗的研究进展[J].现代预防医学, 2017, 44(14): 2644-2646+2650. doi: CNKI: SUN: XDYF.0.2017-14-037http://doi.org/CNKI: SUN: XDYF.0.2017-14-037.
SUSCHAK JJ, WILLIAMS JA, SCHMALJOHN CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity[J]. Hum Vaccin Immunother, 2017, 13(12): 2837-2848. doi: 10.1080/21645515.2017.1330236http://doi.org/10.1080/21645515.2017.1330236.
MASCOLA JR, FAUCI AS. Novel vaccine technologies for the 21st century[J]. Nat Rev Immunol, 2020, 20(2): 87-88. doi: 10.1038/s41577-019-0243-3http://doi.org/10.1038/s41577-019-0243-3.
QIAN C, LIU X, XU Q, et al. Recent Progress on the Versatility of Virus-Like Particles[J]. Vaccines(Basel), 2020, 8(1): 139. doi: 10.3390/vaccines8010139http://doi.org/10.3390/vaccines8010139.
葛华, 蒋丽勇, 刘术, 等. COVID-19 mRNA疫苗关键技术与产品进展分析[J].军事医学, 2020, 44(04): 264-268. doi: 10.7644/j.issn.1674-9960.2020.04.005http://doi.org/10.7644/j.issn.1674-9960.2020.04.005.
MCIVOR RS. Therapeutic delivery of mRNA: the medium is the message[J]. Mol Ther, 2011, 19(5): 822-823. doi: 10.1038/mt.2011.67http://doi.org/10.1038/mt.2011.67.
MIAO L, LI L, HUANG Y, et al. Delivery of mRNA vaccines with heterocyclic lipids increases antitumor efficacy by STING-mediated immune cell activation[J]. Nat Biotechnol, 2019, 37(10): 1174-1185. doi: 10.1038/s41587-019-0247-3http://doi.org/10.1038/s41587-019-0247-3.
PASTOR F, BERRAONDO P, ETXEBERRIA I, et al. An RNA toolbox for cancer immunotherapy[J]. Nat Rev Drug Discov, 2018, 17(10): 751-767. doi: 10.1038/nrd.2018.132http://doi.org/10.1038/nrd.2018.132.
KLIMEK L, JUTEL M, AKDIS CA, et al. ARIAEAACI statement on severe allergic reactions to COVID-19 vaccines-An EAACI-ARIA Position Paper[J]. Allergy, 2021, 76(6): 1624-1628. doi: 10.1111/all.14726http://doi.org/10.1111/all.14726.
POLACK FP, THOMAS SJ, KITCHIN N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine[J]. N Engl J Med, 2020, 383(27): 2603-2615. doi: 10.1056/NEJMc2036242http://doi.org/10.1056/NEJMc2036242.
OLIVER SE, GARGANO JW, MARIN M, et al. The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine-United States, December 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69(50): 1922-1924. doi: 10.15585/mmwr.mm6950e2http://doi.org/10.15585/mmwr.mm6950e2.
WALSH EE, JRFRENCK RW, FALSEY AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates[J]. N Engl J Med, 2020, 383(25): 2439-2450. doi: 10.1056/NEJ-Moa2027906http://doi.org/10.1056/NEJ-Moa2027906.
BADEN LR, EL SAHLY HM, ESSINK B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine[J]. N Engl J Med, 2021 Feb 4, 384(5): 403-416. doi: 10.1056/NEJMoa2035389http://doi.org/10.1056/NEJMoa2035389.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构