浏览全部资源
扫码关注微信
1.山西大学 生物医药与大健康研究院,山西 太原 030006
2.中国医学科学院 北京协和医学院药物研究所,北京 100050
3.Department of Surgery, University of Toronto, 多伦多 M5G 2C4
[ "杜冠华,男,研究员;博士,博士生导师;国际欧亚科学院院士,国务院政府特殊津贴专家;担任中国药理学会党委书记、国际基础与临床药理学联合会(IU-PH AR)执行委员会委员、亚太药理学家联盟(APFP)执行委员会委员、中国晶体学会药物晶体学专业委员会名誉主任委员、国家科技重大专项“重大新药创制”总体专家组专家、中国药典委员会委员,Pharmacological Research-Modern Chinese Medicine杂志主编,以及Pharmacology &Therapeutics,《中国药理学报》《医药导报》《中国药理学通报》等杂志副主编;目前主要从事药物发现、高通量药物筛选、神经和心脑血管药理学研究;主持完成国家科技部“1035计划”筛选平台建设项目、国家自然科学基金重点项目、“863计划”和国家科技重大专项等国家重大重点项目;在国内外刊物发表论文802篇,获授权国家发明专利71项、国际发明专利2项,主编学术著作13部;以第一完成人获得国家科技进步二等奖2项、省部级科技进步二等奖以上5项,取得新药证书6项;曾获全国优秀科技工作者、北京市优秀教师、北京市教育先锋。E-mail:dugh@imm.ac.cn" ]
纸质出版日期:2022-09,
收稿日期:2022-04-16,
修回日期:2022-06-17,
移动端阅览
杜冠华,宋俊科,杜立达等.新冠病毒肺炎疫情后治疗病毒性疾病药物研发趋势与策略[J].新兴科学和技术趋势,2022,1(1):55-70.
DU Guanhua, SONG Junke, DU Lida, et al. Trends and strategies of drug discovery for the treatment of viral diseases after the outbreak of COVID-19. [J]. Emerging Science and Technology, 2022,1(1):55-70.
杜冠华,宋俊科,杜立达等.新冠病毒肺炎疫情后治疗病毒性疾病药物研发趋势与策略[J].新兴科学和技术趋势,2022,1(1):55-70. DOI: 10.12405/j.issn.2097-1486.2022.01.006.
DU Guanhua, SONG Junke, DU Lida, et al. Trends and strategies of drug discovery for the treatment of viral diseases after the outbreak of COVID-19. [J]. Emerging Science and Technology, 2022,1(1):55-70. DOI: 10.12405/j.issn.2097-1486.2022.01.006.
人类认识病毒性疾病历史甚久,明确的文字记载也有近2000年时间。几千年来,中医药学在文献中记载了病毒性疾病,基于防治经验积累形成治疗传染性疾病的专著,描述了病毒及其感染疾病的特征,积累了有效的防治方法,发现了有效的治疗药物,创建了早期的疫苗接种预防策略;几千年来,西方医学也有大量关于病毒性疾病传播导致人口大量减少的记载。人类认识病毒的物质状态和生物特性大约有100年历史,由此产生的疫苗,有效控制了数种病毒性疾病的传播,甚至消灭了天花。人类明确病毒的基本结构才有半个多世纪,以抑制病毒复制为目的的抗病毒药物研究开始兴起,发现了数十个抗病毒药物,形成了基于靶点的抗病毒药物研发模式,引导过去几十年全球药物研发的方向。然而,已有病毒性疾病多数尚未消灭,新发病毒性疾病不断出现,疫苗的缺乏和滞后使防控措施局限;仅仅针对病毒复制研发的药物数量和治疗效果都很有限。从策略上分析,清除体内病毒,阻断病毒感染,抑制病毒致病,控制疾病发展,促进病体修复的药物依然缺乏,将成为防治病毒性疾病药物研发的新趋势。
Humans have experienced a long history to know the viral diseases with a clear written record for nearly 2000 years. For thousands of years
viral diseases have been recorded in the literature of traditional Chinese medicine. And monographs on the treatment of infectious diseases have been formed based on the prevention and treatment experience
describing the characteristics of viruses and their infectious diseases. Traditional Chinese medicine has accumulated effective prevention methods and discovered effective thera-peutic drugs
creating an early vaccination prevention strategy. For thousands of years
Western medicine also has abundant records of the spread of viral diseases leading to massive population reductions. Humans have known the physical state and biological characteristics of viruses for about 100 years. The resulting vaccines have effectively controlled the spread of several viral diseases and even eliminated smallpox. It has only been more than half a century that the basic structure of viruses has been clarified by humans. During this period
research on antiviral drugs for the purpose of inhibiting virus replication began to rise
and dozens of antiviral drugs were discovered. As a result
a target-based antiviral drug research and develop-ment model has been formed
which has guided the direction of global drug research and development in the past few decades. However
most of the existing viral diseases have not been eliminated
and new viral diseases continue to emerge. The lack of related vaccines or the lag in research and development limit the prevention and control of related epidemics. The number of drugs developed against viral replication is small
and their therapeutic effects are limited. From a strategic analysis
there is still a lack of drugs to e-liminate viruses in the body
block virus infection
inhibit virus pathogenesis
control disease develop-ment
and promote disease body repair
which will become a new trend in the research and development of drugs for the prevention and treatment of viral diseases.
病毒病毒性疾病抗病毒药物防治病毒性疾病药物
virusviral diseasesantiviral drugsdrugs for the prevention and treatment of viral diseases
李经纬.记载天花最早文献的辨证[J]. 广东医学(祖国医学版), 1964, (2): 35-38. doi: 10.13820/j.cnki.gdyx.1964.02.015http://doi.org/10.13820/j.cnki.gdyx.1964.02.015.
LUSTIG A, LEVINE AJ. One hundred years of virology[J]. J Virol, 1992, 66(8): 4629-4631. doi: 10.1128/JVI.66.8.4629-4631.1992http://doi.org/10.1128/JVI.66.8.4629-4631.1992.
BOS L.100 years of virology: from vitalism via molecular biology to genetic engineering [J]. Trends Microbiol, 2000, 8(2): 82-87. doi: 10.1016/s0966-842x(99)01678-9http://doi.org/10.1016/s0966-842x(99)01678-9.
WITZ J. A reappraisal of the contribution of Friedrich Loeffler to the development of the modern concept of virus [J]. Arch Virol, 1998, 143(11): 2261-2263. doi: 10.1007/s007050050458http://doi.org/10.1007/s007050050458.
LOSEY L, OGDEN E, BISRAT F, et al. The CORE Group Polio Proj ect: An Overview of Its History and Its Contributions to the Global Polio Eradication Initiative[J]. Am J Trop Med Hyg, 2019, 101(4 Suppl): 4-14. doi: 10.4269/ajtmh.18-0916http://doi.org/10.4269/ajtmh.18-0916.
HADI J, DUNOWSKA M, WU S, et al. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses [J]. Pathogens, 2020, 9(9): 737. doi: 10.3390/pathogens9090737http://doi.org/10.3390/pathogens9090737.
WIKTOR T. Virus Vaccines and Therapeutic Approaches[M]. Rhabdoviruses. CRC Press.2018: 99-112.
EGGERS HJ. Milestones in early poliomyelitis research (1840 to 1949)[J]. J Virol, 1999, 73(6): 4533-4535. doi: 10.1128/JVI.73.6.4533-4535.1999http://doi.org/10.1128/JVI.73.6.4533-4535.1999.
WOZNIAK-KOSEK A, KEMPINSKA-MIROSLAWSKA B, HOSER G. Detection of the influenza virus yesterday and now [J]. Acta Biochim Pol, 2014, 61(3): 465-470. doi: 10.18388/abp.20141865http://doi.org/10.18388/abp.20141865.
SOPER FL. The Newer Epidemiology of Yellow Fever[J]. Am J Public Health Nations Health, 1937, 27(1): 1-14. doi: 10.2105/ajph.27.1.1http://doi.org/10.2105/ajph.27.1.1.
SIMMONS BJ, FALTO-AIZPURUA LA, GRIFFITH RD, et al. Smallpox: 12, 000 years from plagues to eradication: a dermatologic ailment shaping the face of society [J]. J AMA Dermatol, 2015, 151(5): 521. doi: 10.1001/jamadermatol.2014.4812http://doi.org/10.1001/jamadermatol.2014.4812.
LIU J, XIE W, WANG Y, et al. A comparative overview of COVID-19, MERS and SARS: Review article[J]. Int J Surg, 2020, 81: 1-8. doi: 10.1016/j.ijsu.2020.07.032http://doi.org/10.1016/j.ijsu.2020.07.032.
薛永磊.极简人类瘟疫史[J]. 中国海关, 2020, (02): 34-37.
高明明.中国古代消毒与防疫方法简述[J]. 安徽中医学院学报, 1995, (03): 8-9.
MORGAN AJ, PARKER S. Translational mini-review series on vaccines: The Edward Jenner Museum and the history of vaccination [J]. Clin Exp Immunol, 2007, 147(3): 389-394. doi: 10.1111/j.1365-2249.2006.03304.xhttp://doi.org/10.1111/j.1365-2249.2006.03304.x.
刘宁.试论吴有性《温疫论》在温病学中的贡献[J]. 北京中医, 1996, (1): 48-49.
BURNS RP. A Double-Blind Study of Idu in Human Herpes Simplex Keratitis [J]. Arch Ophthalmol, 1963, 70(3): 381-384. doi: 10.1001/archopht.1963.00960050383020http://doi.org/10.1001/archopht.1963.00960050383020.
DE CLERCQ E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS)[J]. Adv Pharmacol, 2013, 67: 317-358. doi: 10.1016/B978-0-12-405880-4.00009-3http://doi.org/10.1016/B978-0-12-405880-4.00009-3.
BHANA N, ORMROD D, PERRY CM, et al. Zidovudine: a review of its use in the management of vertically-acquired pediatric HIV infection [J]. Paediatr Drugs, 2002, 4(8): 515-553. doi: 10.2165/00128072-200204080-00004http://doi.org/10.2165/00128072-200204080-00004.
LEA AP, FAULDS D. Stavudine: a review of its pharmacodynamic and pharmacokinetic properties and clinical potential in HIV infection [J]. Drugs, 1996, 51(5): 846-864. doi: 10.2165/00003495-199651050-00009http://doi.org/10.2165/00003495-199651050-00009.
DE BETHUNE MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009)[J]. Antiviral Res, 2010, 85(1): 75-90. doi: 10.1016/j.antiviral.2009.09.008http://doi.org/10.1016/j.antiviral.2009.09.008.
BARDSLEY-ELLIOT A, PERRY CM. Nevirapine: a review of its use in the prevention and treatment of paediatric HIV infection [J]. Paediatr Drugs, 2000, 2(5): 373-407. doi: 10.2165/00128072-200002050-00005http://doi.org/10.2165/00128072-200002050-00005.
KITCHEN VS, SKINNER C, ARIYOSHI K, et al. Safety and activity of saquinavir in HIV infection [J]. Lancet, 1995, 345(8955): 952-955. doi: 10.1016/s0140-6736(95)90699-1http://doi.org/10.1016/s0140-6736(95)90699-1.
SERRAO E, ODDE S, RAMKUMAR K, et al. Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors [J]. Retrovirology, 2009, 6(1): 25. doi: 10.1186/1742-4690-6-25http://doi.org/10.1186/1742-4690-6-25.
BUGIN K, WOODCOCK J. Trends in COVID-19 therapeutic clinical trials [J]. Nat Rev Drug Discov, 2021, 20(4): 254-255. doi: 10.1038/d41573-021-00037-3http://doi.org/10.1038/d41573-021-00037-3.
LAMB YN. Nirmatrelvir Plus Ritonavir: First Approval[J]. Drugs, 2022, 82(5): 585-591. doi: 10.1007/s40265-022-01692-5http://doi.org/10.1007/s40265-022-01692-5.
SYED YY. Molnupiravir: First Approval [J]. Drugs, 2022, 82(4): 455-460. doi: 10.1007/s40265-022-01684-5http://doi.org/10.1007/s40265-022-01684-5.
MODY V, HO J, WILLS S, et al. Identification of 3-chymotrypsin like protease (3CLPro)inhibitors as potential anti-SARS-CoV-2 agents [J]. Commun Biol, 2021, 4(1): 93. doi: 10.1038/s42003-020-01577-xhttp://doi.org/10.1038/s42003-020-01577-x.
HENDERSON R, EDWARDS RJ, MANSOURI K, et al. Controlling the SARS-CoV-2 spike glycoprotein conformation [J]. Nature Structural & Molecular Biolog y, 2020, 27(10): 925-933. doi: 10.1038/s41594-020-0479-4http://doi.org/10.1038/s41594-020-0479-4.
DEY D, BORKOTOKY S, BANERJEE M. In silico identification of Tretinoin as a SARS-CoV-2 envelope(E)protein ion channel inhibitor [J]. Computers in Biolog y and Medicine, 2020, 127: 104063. doi: 10.1016/j.compbiomed.2020.104063http://doi.org/10.1016/j.compbiomed.2020.104063.
ZHENG Y, ZHUANG MW, HAN L, et al. Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2)membrane (M)protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling[J]. Signal Transduct Target Ther, 2020, 5(1): 299. doi: 10.1038/s41392-020-00438-7http://doi.org/10.1038/s41392-020-00438-7.
PENG Y, DU N, LEI YQ, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design [J]. Embo J, 2020, 39(20): e105938. doi: 10.15252/embj.2020105938http://doi.org/10.15252/embj.2020105938.
TAHIR UL QAMAR M, ALQAHTANI SM, ALAMRI MA, et al. Structural basis of SARS-CoV-23CL(pro)and anti-COVID-19 drug discovery from medicinal plants [J]. J Pharm Anal, 2020, 10(4): 313-319. doi: 10.1016/j.jpha.2020.03.009http://doi.org/10.1016/j.jpha.2020.03.009.
FU Z, HUANG B, TANG J, et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery [J]. Nat Commun, 2021, 12(1): 488. doi: 10.1038/s41467-020-20718-8http://doi.org/10.1038/s41467-020-20718-8.
TIAN L, QIANG T, LIANG C, et al. RNA-dependent RNA polymerase (RdRp)inhibitors: The current landscape and repurposing for the COVID-19 pandemic [J]. Eur J Med Chem, 2021, 213: 113201. doi: 10.1016/j.ejmech.2021.113201http://doi.org/10.1016/j.ejmech.2021.113201.
HABTEMARIAM S, NABAVI SF, BANACH M, et al. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy?[J]. Arch Med Res, 2020, 51(7): 733-735. doi: 10.1016/j.arcmed.2020.05.024http://doi.org/10.1016/j.arcmed.2020.05.024.
SELVARAJ C, DINESH DC, PANWAR U, et al. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase(nsp14)for identifying antiviral inhibitors against COVID-19 [J]. J Biomol Struct Dyn, 2021, 39(13): 4582-4593. doi: 10.1080/07391102.2020.1778535http://doi.org/10.1080/07391102.2020.1778535.
HONG S, SEO SH, WOO SJ, et al. Epigallocatechin Gallate Inhibits the Uridylate-Specific Endoribonuclease Nsp15 and Efficiently Neutralizes the SARSCoV-2 Strain [J]. J Agric Food Chem, 2021, 69(21): 5948-5954. doi: 10.1021/acs.jafc.1c02050http://doi.org/10.1021/acs.jafc.1c02050.
EL HASSAB MA, IBRAHIM TM, SHOUN AA, et al. In silico identification of potential SARS COV-2 2′-O-methyltransferase inhibitor: fragment-based screening approach and MM-PBSA calculations [J]. RSC Adv, 2021, 11(26): 16026-16033. doi: 10.1039/d1ra01809dhttp://doi.org/10.1039/d1ra01809d.
OZ M, LORKE DE, KABBANI N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor [J]. Pharmacol Ther, 2021, 221: 107750. doi: 10.1016/j.pharmthera.2020.107750http://doi.org/10.1016/j.pharmthera.2020.107750.
BARGE S, JADE D, GOSAVI G, et al. In-silico screening for identification of potential inhibitors against SARS-CoV-2 transmembrane serine protease 2(TMPRSS2)[J]. Eur J Pharm Sci, 2021, 162: 105820. doi: 10.1016/j.ejps.2021.105820http://doi.org/10.1016/j.ejps.2021.105820.
KAUR U, CHAKRABARTI SS, OJHA B, et al. Targeting Host Cell Proteases to Prevent SARS-CoV-2 Invasion [J]. Curr Drug Targets, 2021, 22(2): 192-201. doi: 10.2174/1389450121666200924113243http://doi.org/10.2174/1389450121666200924113243.
ZHAO MM, YANG WL, YANG FY, et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development [J]. Signal Transduct Target Ther, 2021, 6(1): 134. doi: 10.1038/s41392-021-00558-8http://doi.org/10.1038/s41392-021-00558-8.
LI H, ZHOU Y, ZHANG M, et al. Updated Approaches against SARS-CoV-2 [J]. Antimicrob Agents Chemother, 2020, 64(6): e00483-00420. doi: 10.1128/AAC.00483-20http://doi.org/10.1128/AAC.00483-20.
SOLIMANI F, MEIER K, GHORESCHI K. Janus kinase signaling as risk factor and therapeutic target for severe SARS-CoV-2 infection [J]. European J ournal of Immunolog y, 2021, 51(5): 1071-1075. doi: 10.1002/eji.202149173http://doi.org/10.1002/eji.202149173.
THARAPPEL AM, SAMRAT SK, LI Z, et al. Targeting Crucial Host Factors of SARS-CoV-2 [J]. ACS Infect Dis, 2020, 6(11): 2844-2865. doi: 10.1021/acsinfecdis.0c00456http://doi.org/10.1021/acsinfecdis.0c00456.
D′AMORE A, GRADOGNA A, PALOMBI F, et al. The Discovery of Naringenin as Endolysosomal Two-Pore Channel Inhibitor and Its Emerging Role in SARS-CoV-2 Infection [J]. Cells, 2021, 10(5): 1130. doi: 10.3390/cells10051130http://doi.org/10.3390/cells10051130.
VON STILLFRIED S, BÜLOW RD, RÖHRIG R, et al. First report from the German COVID-19 autopsy registry [J]. Lancet Reg Health Eur, 2022, 15: 100330. doi: 10.1016/j.lanepe.2022.100330http://doi.org/10.1016/j.lanepe.2022.100330.
WANG H, JIA S, LI Z, et al. A Comprehensive Review of Artificial Intelligence in Prevention and Treatment of COVID-19 Pandemic [J]. Front Genet, 2022, 13: 845305. doi: 10.3389/fgene.2022.845305http://doi.org/10.3389/fgene.2022.845305.
FLORESTA G, ZAGNI C, GENTILE D, et al. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design [J]. Int J Mol Sci, 2022, 23(6): 3261. doi: 10.3390/ijms23063261http://doi.org/10.3390/ijms23063261.
YUN C, LEE HJ, LEE CJ. Small Molecule Drug Candidates for Managing the Clinical Symptoms of COVID-19: a Narrative Review [J]. Biomol Ther(Seoul), 2021, 29(6): 571-581. doi: 10.4062/biomolther.2021.134http://doi.org/10.4062/biomolther.2021.134.
BAO L, DENG W, HUANG B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice [J]. Nature, 2020, 583(7818): 830-833. doi: 10.1038/s41586-020-2312-yhttp://doi.org/10.1038/s41586-020-2312-y.
DENG W, BAO L, LIU J, et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques [J]. Science, 2020, 369(6505): 818-823. doi: 10.1126/science.abc5343http://doi.org/10.1126/science.abc5343.
TONG S, SU Y, YU Y, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study [J]. Int J Antimicrob Agents, 2020, 56(3): 106114. doi: 10.1016/j.ijantimicag.2020.106114http://doi.org/10.1016/j.ijantimicag.2020.106114.
CAO B, WANG Y, WEN D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19 [J]. N Eng l J Med, 2020, 382(19): 1787-1799. doi: 10.1056/NEJMoa2001282http://doi.org/10.1056/NEJMoa2001282.
NOJOMI M, YASSIN Z, KEYVANI H, et al. Effect of Arbidol (Umifenovir)on COVID-19: a randomized controlled trial [J]. BMC Infect Dis, 2020, 20(1): 954. doi: 10.1186/s12879-020-05698-whttp://doi.org/10.1186/s12879-020-05698-w.
CHIBA S. Effect of early oseltamivir on outpatients without hypoxia with suspected COVID-19 [J]. Wien Klin Wochenschr, 2021, 133(7-8): 292-297. doi: 10.1007/s00508-020-01780-0http://doi.org/10.1007/s00508-020-01780-0.
ZHANG R, MYLONAKIS E. In inpatients with COVID-19, none of remdesivir, hydroxychloroquine, lopinavir, or interferon beta-1 a differed from standard care for in-hospital mortality [J]. Ann Intern Med, 2021, 174(2): JC17. doi: 10.7326/ACPJ202102160-017http://doi.org/10.7326/ACPJ202102160-017.
FERNER RE, ARONSON JK. Chloroquine and hydroxychloroquine in covid-19 [J]. BMJ, 2020, 369: m1432. doi: 10.1136/bmj.m1432http://doi.org/10.1136/bmj.m1432.
WANG Y, ZHANG D, DU G, et al. Remdesivir in adults with severe COVID-19: a randomised, doubleblind, placebo-controlled, multicentre trial [J]. Lancet, 2020, 395(10236): 1569-1578. doi: 10.1016/S0140-6736(20)31022-9http://doi.org/10.1016/S0140-6736(20)31022-9.
MCCREARY EK, ANGUS DC. Efficacy of Remdesivir in COVID-19 [J]. J AMA, 2020, 324(11): 1041-1042. doi: 10.1001/jama.2020.16337http://doi.org/10.1001/jama.2020.16337.
YOUNG B, TAN TT, LEO YS. The place for remdesivir in COVID-19 treatment [J]. Lancet Infect Dis, 2021, 21(1): 20-21. doi: 10.1016/S1473-3099(20)30911-7http://doi.org/10.1016/S1473-3099(20)30911-7.
MACARTHUR RD, NOVAK RM. Reviews of antiinfective agents: maraviroc: the first of a new class of antiretroviral agents [J]. Clin Infect Dis, 2008, 47(2): 236-241. doi: 10.1086/589289http://doi.org/10.1086/589289.
LALEZARI JP, HENRY K, O′HEARN M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America[J]. N Eng l J Med, 2003, 348(22): 2175-2185. doi: 10.1056/NEJMoa035026http://doi.org/10.1056/NEJMoa035026.
POORDAD F, Jr.MCCONE J,, BACON BR, et al. Boceprevir for untreated chronic HCV genotype 1 infection[J]. N Eng l J Med, 2011, 364(13): 1195-1206. doi: 10.1056/NEJMoa1010494http://doi.org/10.1056/NEJMoa1010494.
ROSENQUIST A, SAMUELSSON B, JOHANSSON PO, et al. Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor[J]. J Med Chem, 2014, 57(5): 1673-1693. doi: 10.1021/jm401507shttp://doi.org/10.1021/jm401507s.
HSU A, GRANNEMAN GR, BERTZ RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents [J]. Clin Pharmacokinet, 1998, 35(4): 275-291. doi: 10.2165/00003088-199835040-00002http://doi.org/10.2165/00003088-199835040-00002.
ALI A, VIJAYAN R. Dynamics of the ACE2-SARSCoV-2/SARS-CoV spike protein interface reveal unique mechanisms [J]. Sci Rep, 2020, 10(1): 14214. doi: 10.1038/s41598-020-71188-3http://doi.org/10.1038/s41598-020-71188-3.
BOURGONJE AR, ABDULLE AE, TIMENS W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19)[J]. J Pathol, 2020, 251(3): 228-248. doi: 10.1002/path.5471http://doi.org/10.1002/path.5471.
HIJANO DR, VU LD, KAUVAR LM, et al. Role of Type I Interferon (IFN)in the Respiratory Syncytial Virus (RSV)Immune Response and Disease Severity[J]. Front Immunol, 2019, 10: 566. doi: 10.3389/fimmu.2019.00566http://doi.org/10.3389/fimmu.2019.00566.
GUSTINE JN, JONES D. Immunopathology of Hyperinflammation in COVID-19 [J]. Am J Pathol, 2021, 191(1): 4-17. doi: 10.1016/j.ajpath.2020.08.009http://doi.org/10.1016/j.ajpath.2020.08.009.
FUNK CD, ARDAKANI A. A Novel Strategy to Mitigate the Hyperinflammatory Response to COVID-19 by Targeting Leukotrienes [J]. Front Pharmacol, 2020, 11: 1214. doi: 10.3389/fphar.2020.01214http://doi.org/10.3389/fphar.2020.01214.
LV H, SHI L, BERKENPAS JW, et al. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design [J]. Brief Bioinform, 2021, 22(6): bbab320. doi: 10.1093/bib/bbab320http://doi.org/10.1093/bib/bbab320.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构