浏览全部资源
扫码关注微信
1.华东师范大学 精密光谱科学与技术国家重点实验室,上海 200062
2.中国科学院 超强激光科学卓越创新中心,上海 201800
3.山西大学 极端光学协同创新中心,山西 太原 030006
[ "荆杰泰,男,教授;博士,博士生导师;国家杰出青年科学基金获得者,上海市优秀学术带头人,东方学者,曙光学者以及浦江人才;目前主要从事量子光学与量子信息方面的实验与理论研究,尤其聚焦量子光源的制备与应用;先后主持国家基金委重大研究计划重点项目和上海市教委科研创新计划自然科学重大项目等;近五年发表通讯作者论文60余篇,包括9篇Phys Rev Lett,Nat Commun,Optica及PNAS各1篇;培养学生3人次获王大珩高校学生光学奖,1人次获得饶毓泰基础光学奖。E-mail:jtjing@phy.ecnu.edu.cn" ]
纸质出版日期:2022-09,
收稿日期:2022-03-29,
修回日期:2022-05-23,
移动端阅览
张凯,郭钰,董安琪等.基于原子系综的多模量子光源[J].新兴科学和技术趋势,2022,1(1):24-39.
ZHANG Kai, GUO YU, DONG Anqi, et al. Multimode quantum light sources based on atomic ensemble. [J]. Emerging Science and Technology, 2022,1(1):24-39.
张凯,郭钰,董安琪等.基于原子系综的多模量子光源[J].新兴科学和技术趋势,2022,1(1):24-39. DOI: 10.12405/j.issn.2097-1486.2022.01.003.
ZHANG Kai, GUO YU, DONG Anqi, et al. Multimode quantum light sources based on atomic ensemble. [J]. Emerging Science and Technology, 2022,1(1):24-39. DOI: 10.12405/j.issn.2097-1486.2022.01.003.
多模量子光源在量子通信、量子计算以及量子计量学等领域有着广泛应用。基于原子系综的四波混频过程因具有较强的非线性效应,在产生多模量子光源方面具有显著优势。本文综述了基于空间复用四波混频过程产生多模量子光源,包括4模、6模、10模、14模强度差压缩量子关联以及6模量子纠缠。此外,结合光学轨道角动量复用技术,实现了66个光学轨道角动量模式的大规模量子网络。这些基于原子系综的多模量子光源为实现大规模量子信息体系提供了新的途径。
Multimode quantum light sources have extensive applications in quantum information
quantum computing
and quantum metrology.The four-wave mixing process in atomic ensemble has significant advantages in generating multimode quantum states due to its strong nonlinearity.This review introduces the generation of multimode quantum light sources based on spatially multiplexed four-wave mixing processes
including four-mode
six-mode
ten-mode
fourteen-mode quantum correlation of intensity difference squeezing and six-mode quantum entanglement.Besides this
the large-scale quantum network over 66 optical angular momentum (OAM) modes by exploiting OAM multiplexing were implemented.These multimode quantum light sources based on atomic ensemble provide a new way for implementing large-scale quantum information systems.
四波混频强度差压缩量子关联多模量子光源光学轨道角动量
four-wave mixingquantum correlation of intensity-difference squeezingmultimode quantum light sourcesorbital angular momentum
BRAUNSTEIN L S, LOOCK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77: 513. doi: 10.1103/RevModPhys.77.513http://doi.org/10.1103/RevModPhys.77.513.
WEEDBROOK C, PIRANDOLA S, GARCÍA-PATRÓN R, et al. Gaussian quantum information[J]. Reviews of Modern Physics, 2012, 84: 621. doi: 10.1103/RevModPhys.84.621http://doi.org/10.1103/RevModPhys.84.621.
FABRE C, TREPS N. Modes and states in quantum optics[J]. Reviews of Modern Physics, 2020, 92: 035005. doi: 10.1103/RevModPhys.92.035005http://doi.org/10.1103/RevModPhys.92.035005.
ZHOU Y Y, YU J, YAN Z H, et al. Quantum Secret SharingAmongFourPlayersUsingMultipartite Bound Entanglement of an Optical Field[J]. Physical Review Letters, 2018, 121: 150502. doi: 10.1103/PhysRevLett.121.150502http://doi.org/10.1103/PhysRevLett.121.150502.
WANG M H, XIANG Y, KANG H J, et al. Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States[J]. Physical Review Letters, 2020, 125: 260506. doi: 10.1103/PhysRevLett.125.260506http://doi.org/10.1103/PhysRevLett.125.260506.
UKAI R, IWATA N, SHIMOKAWA Y, et al. Demonstration of Unconditional One-way Quantum Computations for Continuous Variables[J]. Physical Review Letters, 2011, 106: 240504. doi: 10.1103/PhysRevLett.106.240504http://doi.org/10.1103/PhysRevLett.106.240504.
MENICUCCI N C. Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States[J]. Physical Review Letters, 2014, 112: 120504. doi: 10.1103/PhysRevLett.112.120504http://doi.org/10.1103/PhysRevLett.112.120504.
ZUO X J, YAN Z H, FENG Y N, et al. Quantum Interferometer Combining Squeezing and Parametric Amplification[J]. Physical Review Letters, 2020, 124: 173602. doi: 10.1103/PhysRevLett.124.173602http://doi.org/10.1103/PhysRevLett.124.173602.
YONEZAWA H, AOKI T, FURUSAWA A. Demonstration of a quantum teleportation network for continuous variables[J]. Nature, 2004, 431: 430-433. doi: 10.1038/nature02858http://doi.org/10.1038/nature02858.
JING J T, ZHANG J, YAN Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Physical Review Letters, 2003, 90: 167903. doi: 10.1103/PhysRevLett.90.167903http://doi.org/10.1103/PhysRevLett.90.167903.
SHI S P, TIAN L, WANG Y J, et al. Demonstration of Channel Multiplexing Quantum Communication Exploiting Entangled Sideband Mode[J]. Physical Review Letters, 2020, 125: 070502. doi: 10.1103/PhysRevLett.125.070502http://doi.org/10.1103/PhysRevLett.125.070502.
SU X L, TIAN C X, DENG X W, et al. Quantum Entanglement Swapping between Two Multipartite Entangled States[J]. Physical ReviewLetters, 2016, 117: 240503. doi: 10.1103/PhysRevLett.117.240503http://doi.org/10.1103/PhysRevLett.117.240503.
MENICUCCI N C, LOOCK P VAN, GU M, et al. Universal Quantum Computation with Continuous-Variable Cluster States[J]. Physical Review Letters, 2006, 97: 110501. doi: 10.1103/PhysRevLett.97.110501http://doi.org/10.1103/PhysRevLett.97.110501.
LARSEN M V, GUO X S, BREUM C R, et al. Deterministic multi-mode gates on a scalable photonic quantum computing platform[J]. Nature Physics, 2021, 17: 1018. doi: 10.1038/s41567-021-01296-yhttp://doi.org/10.1038/s41567-021-01296-y.
GUO X S, BREUM C R, Borregaard J, et al. Distributed quantum sensing in a continuous variable entangled network[J]. Nature Physics, 2020, 16: 281. doi: 10.1038/s41567-019-0743-xhttp://doi.org/10.1038/s41567-019-0743-x.
XIA Y, LI W, CLARK W, et al. Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network[J]. Physical Review Letters, 2020, 124: 150502. doi: 10.1103/PhysRevLett.124.150502http://doi.org/10.1103/PhysRevLett.124.150502.
BORSTEN L, DAHANAYAKE D, DUFF M J, et al. Freudenthal triple classification of three-qubit entanglement[J]. Physical Review A, 2008, 80: 032326. doi: 10.1103/PhysRevA.80.032326http://doi.org/10.1103/PhysRevA.80.032326.
ACÍN A, BRUß D, LEWENSTEIN M, et al. Classification of Mixed Three-Qubit States[J]. Physical Review Letters, 2001, 87: 040401. doi: 10.1103/PhysRevLett.87.040401http://doi.org/10.1103/PhysRevLett.87.040401.
BORSTEN L, DAHANAYAKE D, DUFF M J, et al. Four-qubit entanglement classification from string theory[J]. Physical Review Letters, 2010, 105, 100507. doi: 10.1103/PhysRevLett.105.100507http://doi.org/10.1103/PhysRevLett.105.100507.
RIGOLIN G, DE OLIVEIRA T R, DE OLIVEIRA M C, et al. Operational classification and quantification of multipartite entangled states[J]. Physical Review A, 2006, 74: 022314. doi: 10.1103/PhysRevA.74.022314http://doi.org/10.1103/PhysRevA.74.022314.
AOKI T, TAKEI N, YONEZAWA H, et al. Experimental Creation of a Fully Inseparable Tripartite Continuous-Variable State[J]. Physical Review Letters, 2003, 91: 080404. doi: 10.1103/PhysRev-Lett.91.080404http://doi.org/10.1103/PhysRev-Lett.91.080404.
SU X L, TAN A H, JIA X J, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables[J]. Physical ReviewLetters, 2007, 98: 070502. doi: 10.1103/PhysRevLett.98.070502http://doi.org/10.1103/PhysRevLett.98.070502.
SU X L, HAO S H, DENG X W, et al. Gate sequence for continuous variable one-way quantum computation[J]. Nature Communications, 2013, 4: 2828. doi: 10.1038/ncomms3828http://doi.org/10.1038/ncomms3828.
SU X L, ZHAO Y P, HAO S H, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37: 5178. doi: 10.1364/OL.37.005178http://doi.org/10.1364/OL.37.005178.
PYSHER M, MIWA Y, SHAHROKHSHAHI R, et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb[J]. Physical Review Letters, 2011, 107, 030505. doi: 10.1103/PhysRevLett.107.030505http://doi.org/10.1103/PhysRevLett.107.030505.
CHEN M, MENICUCCI N C, PFISTER O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb[J]. Physical Review Letters, 2014, 112: 120505. doi: 10.1103/PhysRevLett.112.120505http://doi.org/10.1103/PhysRevLett.112.120505.
ROSLUND J, DE ARAUÚJO R M, JIANG S, et al. Wavelength multiplexed quantum networks with ultrafast frequencycombs[J]. NaturePhotonics, 2014, 8: 109. doi: 10.1038/nphoton.2013.340http://doi.org/10.1038/nphoton.2013.340.
YOKOYAMA S, UKAI R, ARMSTRONG S C, et al. Ultra-large-scalecontinuous-variablecluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7: 982. doi: 10.1038/nphoton.2013.287http://doi.org/10.1038/nphoton.2013.287.
ASAVANANT W, SHIOZAWA Y, YOKOYAMA S, et al. Generation of time-domain-multiplexed twodimensional cluster state[J]. Science, 2019, 366: 373-376. doi: 10.1126/science.aay2645http://doi.org/10.1126/science.aay2645.
LARSEN M V, GUO X, BREUM C R, et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 2019, 366: 369-372. doi: 10.1126/science.aay4354http://doi.org/10.1126/science.aay4354.
DAEMS D, CERF N J. Spatial multipartite entanglement and localization of entanglement[J]. Physical Review A, 2010, 82: 032303. doi: 10.1103/Phys-RevA.82.032303http://doi.org/10.1103/Phys-RevA.82.032303.
DAEMS D, BERNARD F, CERF N J, et al. Tripartite entanglement in parametric down-conversion with spatially structured pump[J]. Journal of the Optical Society of America B, 2010, 27: 447. doi: 10.1364/JOSAB.27.000447http://doi.org/10.1364/JOSAB.27.000447.
RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7: 354. doi: 10.1038/npho-ton.2013.94http://doi.org/10.1038/npho-ton.2013.94.
WINZER P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8: 345. doi: 10.1038/nphoton.2014.58http://doi.org/10.1038/nphoton.2014.58.
GUPTA P, HORROM T, ANDERSON B E, et al. Multi-channel entanglement distribution using spatial multiplexing from four-wave mixing in atomic vapor[J]. Journal of Modern Optics, 2015, 63: 185. doi: 10.1080/09500340.2015.1071891http://doi.org/10.1080/09500340.2015.1071891.
FLEISCHHAUER M, AND LUKIN M D. Dark-State Polaritons in Electromagnetically Induced Transparency[J]. Physical Review Letters, 2000, 84: 5094. doi: 10.1103/PhysRevLett.84.5094http://doi.org/10.1103/PhysRevLett.84.5094.
DUAN L M, LUKIN M D, CIRAC J I, AND ZOLLER P. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414: 413-418. doi: 10.1038/35106500http://doi.org/10.1038/35106500.
DING D, ZHANG W, ZHOU Z, et al. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble[J]. Physical Review Letters, 2015, 114: 050502. doi: 10.1103/PhysRevLett.114.050502http://doi.org/10.1103/PhysRevLett.114.050502.
ANGLIN J R, KETTERLE W. Bose-Einstein condensation of atomic gases[J]. Nature, 2002, 416: 211. doi: 10.1038/416211ahttp://doi.org/10.1038/416211a.
WANG P, DENG L, HAGLEY E W, et al. Observation of collective atomic recoil motion in a degenerate fermion gas[J]. Physical Review Letters, 2011, 106: 210401. doi: 10.1103/PhysRevLett.106.210401http://doi.org/10.1103/PhysRevLett.106.210401.
RADNAEV A G, DUDIN Y O, ZHAO R, et al. A quantum memory with telecom-wavelength conversion[J]. Nature Physics, 2010, 6: 894-899. doi: 10.1038/nphys1773http://doi.org/10.1038/nphys1773.
LOU X, ZOU Y, WU L, et al. Deterministic entanglement generation from driving through quantum phase transitions[J]. Science, 2017, 355: 620-623. doi: 10.1126/science.aag1106http://doi.org/10.1126/science.aag1106.
WANG P, YU Z, FU Z, et al. Spin-orbit coupled degenerate Fermi gases[J]. Physical Review Letters, 2012, 109: 095301. doi: 10.1103/PhysRevLett.109.095301http://doi.org/10.1103/PhysRevLett.109.095301.
FU Z, HUANG L, MENG Z, et al. Production of Feshbach molecules induced by spin-orbit coupling in Fermi gases[J]. Nature Physics, 2014, 10: 110-115. doi: 10.1038/nphys2824http://doi.org/10.1038/nphys2824.
HUANG L, MENG Z, WANG P, et al. Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases[J]. Nature Physics, 2016, 12: 540. doi: 10.1038/nphys3672http://doi.org/10.1038/nphys3672.
MENG Z, HUANG L, PENG P, et al. Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin-orbit coupling[J]. Physical Review Letters, 2016, 117(23): 235304. doi: 10.1103/PhysRevLett.117.235304http://doi.org/10.1103/PhysRevLett.117.235304.
WU Z, ZHANG L, SUN W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates[J]. Science, 2016, 354: 83-88. doi: 10.1126/science.aaf6689http://doi.org/10.1126/science.aaf6689.
GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86: 153-185. doi: 10.1103/RevModPhys.86.153http://doi.org/10.1103/RevModPhys.86.153.
DAI H, YANG B, REINGRUBER A, et al. Fourboby ring-exchange interactions and anionic statistics within a minimal toric-codeHamiltonian. Nature Physics, 2017, 13: 1195. doi: 10.1038/nphys4243http://doi.org/10.1038/nphys4243.
LUDLOW A D, BOYD M M, YE Y, et al. Optical atomic clocks, Reviews of Modern Physics[J].2015, 87: 637. doi: 10.1103/RevModPhys.87.637http://doi.org/10.1103/RevModPhys.87.637.
HUANG P, TANG B, CHEN X, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters[J]. Metrologia, 2019, 56: 045012. doi: 10.1088/1681-7575/ab2f01http://doi.org/10.1088/1681-7575/ab2f01.
SAVOIE D, ALTORIO M, FANG B, et al. Interleaved Atom Interferometry for High Sensitivity Inertial Measurements[J]. Science Advances, 2018, 4: eaau7948. doi: 10.1126/sciadv.aau7948http://doi.org/10.1126/sciadv.aau7948.
REIM K F, NUNN J, LORENZ V O, et al. Towards high-speed optical quantum memories[J]. Nature Photonics, 2010, 4: 218. doi: 10.1038/nphoton.2010.30http://doi.org/10.1038/nphoton.2010.30.
HOSSEINI M, SPARKES B M, CAMPBELL G, et al. High efficiency coherent optical memory with warm rubidium vapour[J]. Nature Communications, 2011, 2: 174. doi: 10.1038/ncomms1175http://doi.org/10.1038/ncomms1175.
LI H, DOU J, PANG X, et al. Heralding quantum entanglement between two room-temperature atomic ensembles[J]. Optica, 2021, 8: 925. doi: 10.1364/optica.424599http://doi.org/10.1364/optica.424599.
KOMINS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetome-ter[J]. Nature, 2003, 422: 596. doi: 10.1038/nature01484http://doi.org/10.1038/nature01484.
BOYER V, MARINO A M, POOSER R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321: 544-547. doi: 10.1126/science.1158275http://doi.org/10.1126/science.1158275.
MARINO A M, POOSER R C, BOYER V, et al. Tunable delay of Einstein-Podolsky-Rosen entanglement[J]. Nature, 2009, 457: 859-862. doi: 10.1038/nature07751http://doi.org/10.1038/nature07751.
POOSER R C, MARINO A M, BOYER V, et al. Low-noiseamplificationofacontinuous-variable quantum state[J]. Physical Review Letters, 2009, 103: 010501. doi: 10.1103/PhysRevLett.103.010501http://doi.org/10.1103/PhysRevLett.103.010501.
QIN Z Z, CAO L M, WANG H L, et al. Experimental generation of multiple quantum correlated beams from hot rubidium vapor[J]. Physical Review Letters, 2014, 113: 023602. doi: 10.1103/Phys-RevLett.113.023602http://doi.org/10.1103/Phys-RevLett.113.023602.
LIU S S, LOU Y B, JING J T. Interference-induced quantum squeezing enhancement in a two-beam phasesensitive amplifier[J]. Physical Review Letters, 2019, 123: 113602. doi: 10.1103/PhysRevLett.123.113602http://doi.org/10.1103/PhysRevLett.123.113602.
POOSER R C, SAVINO N, BATSON E, et al. Truncated nonlinear interferometry for quantum-enhanced atomic force microscopy[J]. Physical Review Letters, 2020, 124: 230504. doi: 10.1103/Phys-RevLett.124.23050http://doi.org/10.1103/Phys-RevLett.124.23050.
ZHANG K, WANG W, LIU S S, et al. Reconfigurable Hexapartite Entanglement by Spatially Multiplexed Four-Wave Mixing Processes[J]. Physical Review Letters, 2020, 124: 090501. doi: 10.1103/PhysRevLett.124.090501http://doi.org/10.1103/PhysRevLett.124.090501.
LEE J C, PARK K K, ZHAO T M, et al. Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms[J]. Physical Review Letters, 2016, 117: 250501. doi: 10.1103/PhysRevLett.117.250501http://doi.org/10.1103/PhysRevLett.117.250501.
LUKIN M D. Colloquium: Trapping and manipulating photon states in atomic ensembles[J]. Reviews of Modern Physics, 2003, 75: 457. doi: 10.1103/RevModPhys.75.457http://doi.org/10.1103/RevModPhys.75.457.
MACRAE, A, BRANNAN, T, ACHAL, R, LVOVSKY, A I. Tomography of a High-Purity Narrowband Photon from a Transient Atomic Collective Excitation[J]. Physical Review Letters, 2012, 109: 033601. doi: 10.1103/PhysRevLett.109.033601http://doi.org/10.1103/PhysRevLett.109.033601.
HUDELIST F, KONG J, LIU C J, et al. Quantum metrology withparametricamplifier-basedphoton correlation interferometers[J]. Nature Communications, 2014, 5: 3049. doi: 10.1038/ncomms4049http://doi.org/10.1038/ncomms4049.
LAWRIE B J, EVANS P G, POOSER R C. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons[J]. Physical Review Letters, 2013, 110: 156802. doi: 10.1103/PhysRevLett.110.156802http://doi.org/10.1103/PhysRevLett.110.156802.
M. DOWRAN, A. KUMAR, B. J. LAWRIE, R. C. Pooser, and A. M. Marino, Quantum-enhanced plasmonic sensing[J]. Optica, 2018, 5: 628. doi: 10.1364/OPTICA.5.000628http://doi.org/10.1364/OPTICA.5.000628.
WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentummultiplexing[J]. NaturePhotonics, 2012, 6: 488-496. doi: 10.1038/nphoton.2012.138http://doi.org/10.1038/nphoton.2012.138.
BOZINOVIC N, YUE Y, REN Y, et al. Terabitscale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340: 1545-1548. doi: 10.1126/science.1237861http://doi.org/10.1126/science.1237861.
DEVLIN R C, AMBROSIO A, RUBIN N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358: 896-901. doi: 10.1126/science.aao5392http://doi.org/10.1126/science.aao5392.
PAN J W, CHEN Z B, LU C Y, et al. Multiphoton entanglement and interferometry[J]. Reviews of Modern Physics, 2012, 84: 777. doi: 10.1103/RevModPhys.84.777http://doi.org/10.1103/RevModPhys.84.777.
MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412: 313-316. doi: 10.1038/35085529http://doi.org/10.1038/35085529.
MALIK M, ERHARD M, HUBER M, et al. Multiphoton entanglement in high dimensions[J]. Nature Photonics, 2016, 10: 248-252. doi: 10.1038/nphoton.2016.12http://doi.org/10.1038/nphoton.2016.12.
WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518: 516-519. doi: 10.1038/nature14246http://doi.org/10.1038/nature14246.
ZHANG W, DING D S, DONG M X, et al. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories[J]. Nature Communications, 2016, 7: 13514. doi: 10.1038/ncomms13514http://doi.org/10.1038/ncomms13514.
ZHAO T M, IHN Y S, KIM Y H. Direct Generation of Narrow-band Hyperentangled Photons[J]. Physical Review Letters, 2019, 122: 123607. doi: 10.1103/PhysRevLett.122.123607http://doi.org/10.1103/PhysRevLett.122.123607.
ZHANG Y, AGNEW M, ROGER T, et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light[J]. Nature Communications, 2017, 8: 632. doi: 10.1038/s41467-017-00706-1http://doi.org/10.1038/s41467-017-00706-1.
SIMON R. Peres-Horodecki separability criterion for continuous variable systems[J]. Physical Review Letters, 2000, 84: 2726. doi: 10.1103/PhysRev-Lett.84.2726http://doi.org/10.1103/PhysRev-Lett.84.2726.
CAO L M, QI J, DU J J, et al. Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing[J]. Physical Review A, 2017, 95: 023803. doi: 10.1103/PhysRevA.95.023803http://doi.org/10.1103/PhysRevA.95.023803.
WANG H L, FABRE C, JING J T. Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump[J]. Physical Review A, 2017, 95: 051802. doi: 10.1103/PhysRevA.95.051802http://doi.org/10.1103/PhysRevA.95.051802.
LIU S S, WANG H L, JING J T. Two-beam pumped cascadedfour-wave-mixingprocessforproducing multiple-beam quantum correlation[J]. Physical Review A, 2018, 97: 043846. doi: 10.1103/PhysRevA.97.043846http://doi.org/10.1103/PhysRevA.97.043846.
LIU S S, LOU Y B, JING J T. Experimental characterization of multiple quantum correlated beams in two-beam pumped cascaded four-wave mixing process[J]. Optics Express, 2019, 27: 37999-38005. doi: 10.1364/OE.27.037999http://doi.org/10.1364/OE.27.037999.
WERNER R F, WOLF M M. Bound entangled gaussian states[J]. Physical Review Letters, 2001, 86: 3658. doi: 10.1103/PhysRevLett.86.3658http://doi.org/10.1103/PhysRevLett.86.3658.
SPERLING J, VOLGE W. Multipartite entanglement witnesses[J]. Physical Review Letters, 2013, 111: 110503. doi: 10.1103/PhysRevLett.111.110503http://doi.org/10.1103/PhysRevLett.111.110503.
VIDAL G, WERNER R F. Computable measure of entanglement[J]. Physical Review A, 2002, 65: 032314. doi: 10.1103/PhysRevA.65.032314http://doi.org/10.1103/PhysRevA.65.032314.
ADESSO G, SERAFINI A, ILLUMINATI F. Extremal entanglement and mixedness in continuous variable systems[J]. Physical Review A, 2004, 70: 022318. doi: 10.1103/PhysRevA.70.022318http://doi.org/10.1103/PhysRevA.70.022318.
PAN X Z, YU S, ZHOU Y F, et al. Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor[J]. Physical Review Letters, 2019, 123: 070506. doi: 10.1103/PhysRevLett.123.070506http://doi.org/10.1103/PhysRevLett.123.070506.
WANG W, ZHANG K, JING J T. Large-Scale Quantum Network over 66 Orbital Angular Momentum Optical Modes[J]. Physical Review Letters, 2020, 125: 140501. doi: 10.1103/PhysRevLett.125.140501http://doi.org/10.1103/PhysRevLett.125.140501.
YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117: 190501. doi: 10.1038/s41598-018-35507-zhttp://doi.org/10.1038/s41598-018-35507-z.
KUES M, REIMER C, ROZTOCKI P, et al. Onchip generation of high-dimensional entangled quantum states and their coherent control[J]. Nature, 2017, 546: 622. doi: 10.1038/nature22986http://doi.org/10.1038/nature22986.
REIMER C, KUES M, ROZTOCKI P, et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs[J]. Science, 2016, 351: 1176. doi: 10.1126/science.aad8532http://doi.org/10.1126/science.aad8532.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构