浏览全部资源
扫码关注微信
1.山西大学光电研究 所量子光学与光量子器件国家重点实验室,山西 太原 030006
2.山西大学 理论物理研究所,山西 太原 030006
[ "张天才,山西大学量子光学与光量子器件国家重点实验室教授,国家杰出青年科学基金获得者,教育部“长江学者”特聘教授,“三晋学者”特聘教授,中国物理学会理事,山西省物理学会理事长,曾任中国物理学会量子光学专业委员会主任,多家国内外期刊编委;主要从事量子光学、冷原子物理、激光技术和精密测量方面的研究;在Phys. Rev. Lett.,Nat. Comm.等学术期刊发表论文230余篇,参与出版著作3部,获国家发明专利16项;主持完成国家重点研发计划课题、基金委重大研究计划和重点项目等多项,教育部“长江学者和创新团队发展计划”负责人。E-mail:tczhang@sxu.edu.cn" ]
[ "郑耀辉,教授,国家杰出青年基金获得者,青年“三晋学者”特聘教授,山西省中青年拔尖创新人才;主要致力于激光技术、光量子器件等方面的实验研究,及成果转化工作;作为项目负责人先后承担国家重大科研仪器设备研制项目、国家自然科学基金重点项目、区域联合基金集成项目、国家重点研发计划、国家863计划、军委科技委创新特区项目、总装航天科工联合基金等科研项目;在Phys Rev Lett等杂志发表学术论文80余篇;授权美国、中国等国发明专利50余项;获山西省科学技术一等奖2次。E-mail:yhzheng@sxu.edu.cn" ]
[ "牛家树,男,讲师;博士,硕士生导师;山西大学数学与应用数学学士,北京师范大学天文系天体物理硕士,中国科学院理论物理研究所理论物理博士;Frontiers in Astronomy and Space Sciences期刊客座编辑,The Astrophysical Journal等期刊审稿人;现阶段主要研究领域为宇宙线物理与恒星物理;主持和完成国家自然科学基金2项;在银河系宇宙线、暗物质探测和星震学方面做出了一些原创性的工作。E-mail:jsniu@sxu.edu.cn" ]
纸质出版日期:2022-09,
收稿日期:2022-03-31,
修回日期:2022-05-08,
移动端阅览
张天才,郑耀辉,牛家树.引力波探测——面向前沿的科学与技术挑战[J].新兴科学和技术趋势,2022,1(1):10-23.
ZHANG Tiancai, ZHENG Yaohui, NIU JiaShu. Gravitational waves detection: Frontier-oriented scientific and technological challenges. [J]. Emerging Science and Technology, 2022,1(1):10-23.
张天才,郑耀辉,牛家树.引力波探测——面向前沿的科学与技术挑战[J].新兴科学和技术趋势,2022,1(1):10-23. DOI: 10.12405/j.issn.2097-1486.2022.01.002.
ZHANG Tiancai, ZHENG Yaohui, NIU JiaShu. Gravitational waves detection: Frontier-oriented scientific and technological challenges. [J]. Emerging Science and Technology, 2022,1(1):10-23. DOI: 10.12405/j.issn.2097-1486.2022.01.002.
引力波探测是一项重大国际前沿科技研究,不光对探索许多基础科学问题具有重大意义,而且面临着极大的技术挑战:涉及了多学科交叉的若干重大技术问题。本文介绍了引力波探测的历史背景、科学意义及其对技术进步的推动作用;介绍了引力波探测的基本途径,特别是新一代引力波探测的关键技术方法:包括长臂激光干涉仪、先进激光技术、真空技术、隔振悬挂技术以及最新的与量子技术的结合。此外,我们还介绍了目前国内外引力波探测的现状,并对国内建设地基引力波探测的可行性进行了分析。基于此,我们提出了整合国内优势力量,利用废弃地下矿井,结合我国先进激光和量子光源技术,建设10 km左右的地基引力波探测装置的设想。
Gravitational waves (GWs) detection is a major international cutting-edge research in science and technology
which is of great importance to the exploration of many fundamental scientific problems
and also faces great technical challenges involving a number of major technical issues in the intersection of multiple disciplines. This review introduces the history
the scientific significance and the contributions to technological progress of the GWs detection. It also introduces the main paths of the GWs detection
especially the key technological approaches for the next-generation GWs detection
including the long-arm laser interferometer
advanced laser technologies
ultra-high vacuum technology
advanced vibration isolated suspension technology
and their combinations with the latest quantum technologies. This paper also introduces the research status of the GWs detection at home and abroad
and discusses the feasibility of building the ground-based GWs detection in China. Based on this
the authors have proposed a vision of building a 10 km ground-based GWs detection device in abandoned underground mines with the help of the advanced technologies of laser and quantum light sources.
引力波探测干涉仪激光技术量子光源
gravitational waves detectioninterferometerlaser technologyquantum light sources
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102http://doi.org/10.1103/PhysRevLett.116.061102.
WEINBERG S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[M]. New York: Wiley, 1972.
KYUTOKU K, SHIBATA M, TANIGUCHI K. Coalescence of black hole-neutron star binaries[J]. Living Reviews in Relativity, 2021, 24(1): 5. doi: 10.1063/1.3128097http://doi.org/10.1063/1.3128097.
OWEN B J, LINDBLOM L, CUTLER C, et al. Gravitational waves from hot young rapidly rotating neutron stars[J]. Physical Review D, 1998, 58(8): 084020.
FRYER C L, NEW K C B. Gravitational waves from gravitational collapse[J]. Living Reviews in Relativity, 2011, 14(1): 1. doi: 10.12942/lrr-2011-1http://doi.org/10.12942/lrr-2011-1.
SHANNON R M, RAVI V, LENTATI L T, et al. Gravitational waves from binary supermassive black holes missing in pulsar observations[J]. Science, 2015, 349(6255): 1522. doi: 10.1126/science.aab1910http://doi.org/10.1126/science.aab1910.
EMOND W T, RAMAZANOV S, SAMANTA R. Gravitational waves from melting cosmic strings[J]. Journal of Cosmology and Astroparticle Physics, 2022, 2022(1): 057. doi: 10.1088/1475-7516/2022/01/057http://doi.org/10.1088/1475-7516/2022/01/057.
CRITTENDEN R, BOND J R, DAVIS R L, et al. Imprint of gravitational waves on the cosmic microwave background[J]. Physical Review Letters, 1993, 71(3): 324. doi: 10.1103/PhysRevLett.71.324http://doi.org/10.1103/PhysRevLett.71.324.
Science/AAAS Custom Publishing Office.125 Questions: Exploration and Discovery[M]. 2021.https://www.science.org/content/resource/125-questions-exploration-and-discoveryhttps://www.science.org/content/resource/125-questions-exploration-and-discovery.
O'Neill I. Hawking: Gravitational Waves Could Revolutionize Astronomy[M]. seeker, SPACE & INNOVATION, 2016.https://www.seeker.com/hawking-gravitational-waves-could-revolutionize-astronomy-1770882019.htmlhttps://www.seeker.com/hawking-gravitational-waves-could-revolutionize-astronomy-1770882019.html
新华社.综合消息:发现引力波,全球科学家怎么看[N/OL].新华网.2016.http://www.xinhuanet.com/world/2016-02/12/c_1118024493.htmhttp://www.xinhuanet.com/world/2016-02/12/c_1118024493.htm
CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693.
LIGO Scientific Collaboration, Abadie J, Abbott B P, et al. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 2011, 7(12): 962. doi: 10.1038/nphys2083http://doi.org/10.1038/nphys2083.
TSE M, YU H, KIJBUNCHOO N, et al. Quantumenhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 2019, 123: 231107. doi: 10.1103/PhysRev-Lett.123.231107http://doi.org/10.1103/PhysRev-Lett.123.231107.
YU H, MCCULLER L, TSE M, et al. Quantum correlations between light and the kilogram-mass mirrors of LIGO[J]. Nature, 2020, 583(7814): 43. doi: 10.1038/s41586-020-2420-8http://doi.org/10.1038/s41586-020-2420-8.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence[J]. Physical Review Letters, 2016, 116(24): 241103. doi: 10.1103/PhysRevLett.116.241103http://doi.org/10.1103/PhysRevLett.116.241103.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letters, 2017, 119(16): 161101. doi: 10.1103/PhysRevLett.119.161101http://doi.org/10.1103/PhysRevLett.119.161101.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GWTC-1: A Gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs[J]. Physical Review X, 2019, 9(3): 031040. doi: 10.1103/PhysRevX.9.031040http://doi.org/10.1103/PhysRevX.9.031040.
ABBOTT R, ABBOTT T D, ABRAHAM S, et al. GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object[J]. The Astrophysical Journal Letters, 2020, 896(2): L44. doi: 10.3847/2041-8213/ab960fhttp://doi.org/10.3847/2041-8213/ab960f.
VITALE S. The first 5 years of gravitational-wave astrophysics[J]. Science, 2021, 372, 1054. doi: 10.1126/science.abc7397http://doi.org/10.1126/science.abc7397.
DALEY J. Watch Now: Gravitational Waves as New Windows on the Universe[M]. Scientific American. SPACE & PHYSICS. 2019. https://www.scientificamerican.com/article/watch-now-gravitational-waves-asnew-windows-on-the-universe/https://www.scientificamerican.com/article/watch-now-gravitational-waves-asnew-windows-on-the-universe/
TAYLOR J H, HULSE R A, Fowler L A, et al. Further observations of the binary pulsar PSR 1913+16.[J]. The Astrophysical Journal Letters, 1976, 206: L53.
TAYLOR J H, WEISBERG J M. A new test of general relativity-Gravitational radiation and the binary pulsar PSR 1913+16[J]. The Astrophysical Journal, 1982, 253: 908.
王运永.引力波探测[M].北京: 科学出版社, 2020.
YUEN H P. Two-photon coherent states of the radiation field[J]. Physical Review A, 1976, 13: 2226.
WU L-A, KIMBLE H J, HALL J L, et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 1986, 57: 2520.
SHI S P, WANG Y J, YANG W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 2018, 43, (21): 5411. doi: 10.1364/OL.43.005411http://doi.org/10.1364/OL.43.005411.
GODA K, MIYAKAWA O, MIKHAILOV E E, et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nature Physics, 2008, 4(6): 472. doi: 10.1038/nphys920http://doi.org/10.1038/nphys920.
VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801. doi: 10.1103/Phys-RevLett.117.110801http://doi.org/10.1103/Phys-RevLett.117.110801.
KIMBLE H J, LEVIN Y, MATSKO A B, et al. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics[J]. Physical Review D, 2001, 65: 022002.
MCCULLER L, WHITTLE C, GANAPATHY D, et al. Frequency-dependent squeezing for advanced LIGO[J]. Physical Review Letters, 2020, 124(17): 171102.
ZHAO Y, ARITOMI N, CAPOCASA E, et al. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors[J]. Physical Review Letters, 2020, 124(17): 171101. doi: 10.1103/PhysRev-Lett.124.171101http://doi.org/10.1103/PhysRev-Lett.124.171101.
YAP M J, ALTIN P, MCRAE T G, et al. Generation and control of frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement[J]. Nature Photonics, 2020, 14(4): 223. doi: 10.1038/s41566-019-0582-4http://doi.org/10.1038/s41566-019-0582-4.
DOOLEY K L, LEONG J R, ADAMS T, et al. GEO 600 and the GEO-HF upgrade program: successes and challenges[J]. Classical and Quantum Gravity. 2016, 33(7): 075009. doi: 10.1088/0264-9381/33/7/075009http://doi.org/10.1088/0264-9381/33/7/075009.
MIAO H, SMITH N D, EVANS M. Quantum limit for laser interferometric gravitational-wave detectors from optical dissipation[J]. Physical Review X, 2019, 9(1): 11053. doi: 10.1103/PhysRevX.9.011053http://doi.org/10.1103/PhysRevX.9.011053.
REHBEIN H, HARMS J, SCHNABEL R, et al. Optical transfer functions of Kerr nonlinear cavities and interferometers[J]. Physical Review Lettters, 2005, 95: 193001. doi: 10.1103/PhysRevLett.95.193001http://doi.org/10.1103/PhysRevLett.95.193001.
KOROBKO M, KLEYBOLTE L, AST S, et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation[J]. Physical Review Letters, 2017, 118: 143601. doi: 10.1103/PhysRev-Lett.118.143601http://doi.org/10.1103/PhysRev-Lett.118.143601.
BRAGINSKY V B, GORODETSKY M L, Khalili F Y. Optical bars in gravitational wave antennas[J]. Physical Review A, 1997, 232,: 340.
BUONANNO A, Chen Y. Signal recycled laser-interferometer gravitational-wave detectors as optical springs[J]. Physical Review D, 2002, 65: 042001. doi: 10.1103/PhysRevD.65.042001http://doi.org/10.1103/PhysRevD.65.042001.
PURDUE P. Analysis of a quantum nondemolition speed-meter interferometer[J]. Physical Review D, 2002, 66: 022001. doi: 10.1103/PhysRevD.66.022001http://doi.org/10.1103/PhysRevD.66.022001.
Purdue P, Chen Y. Practical speed meter designs for quantum nondemolition gravitational-wave interferometers[J]. Physical Review D, 2002, 66: 122004.
CHEN Y, Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector[J]. Physical Review D, 2003, 67: 122004.
PITKIN M, REID S, ROWAN S, et al. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 2011, 14, 5. doi: 10.12942/lrr-2011-5http://doi.org/10.12942/lrr-2011-5.
LIGO Collaboration.A cryogenic silicon interferometer for gravitational-wave detection[J]. Classical and Quantum Gravity, 2020, 37(16): 165003. doi: 10.1088/1361-6382/ab9143http://doi.org/10.1088/1361-6382/ab9143.
KAGRA and Virgo and LIGO Scientific Collaborations..Upper limits on the isotropic gravitationalwave background from Advanced LIGO and Advanced Virgo's third observing run[J]. Physical Review D, 2021, 104: 022004.
AKUTSU T, ANDO M, ARAI K, et al. Overview of KAGRA: KAGRA science[J]. Progress of Theoretical and Experimental Physics, 2020, 2021(5): 05A103. doi: 10.1093/ptep/ptaa120http://doi.org/10.1093/ptep/ptaa120.
BADARACCO F, HARMS J, DE ROSSI C, et al. KAGRA underground environment and lessons for the Einstein Telescope[J]. Physical Review D, 2021, 104: 042006. doi: 10.1103/PhysRevD.104.042006http://doi.org/10.1103/PhysRevD.104.042006.
PENG W N, JIN P X, LI F Q, et al. A review of the high-power all-solid-state single-frequency continuous-wave laser[J]. Micromachines, 2021, 12(11): 1426. doi: 10.3390/mi12111426http://doi.org/10.3390/mi12111426.
SUN X C, WANG Y J, TIAN L, et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Optics Letters, 2019, 17(7): 072701.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010http://doi.org/10.1088/0264-9381/33/3/035010.
CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531, 150. doi: 10.1038/531150ahttp://doi.org/10.1038/531150a.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构